Have a personal or library account? Click to login
Time Series Mining Approaches for Malaria Vector Prediction on Mid-Infrared Spectroscopy Data Cover

Time Series Mining Approaches for Malaria Vector Prediction on Mid-Infrared Spectroscopy Data

Open Access
|May 2024

References

  1. Bagnall, A, Lines, J, Bostrom, A, Large, J and Keogh, E 2017 The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31: 606660. DOI: 10.1007/s10618-016-0483-9
  2. Barbosa, T M, de Lima, L A, Dos Santos, M C, Vasconcelos, S D, Gama, R A and Lima, K M 2018 A novel use of infra-red spectroscopy (nirs and atr-ftir) coupled with variable selection algorithms for the identification of insect species (diptera: Sarcophagidae) of medico-legal relevance. Acta Tropica, 185: 112. DOI: 10.1016/j.actatropica.2018.04.025
  3. Batista, G, Hao, Y, Keogh, E and Mafra-Neto, A 2011 Towards automatic classification on flying insects using inexpensive sensors. In International Conference on Machine Learning and Applications (pp. 364369). IEEE volume 1. DOI: 10.1109/ICMLA.2011.145
  4. Breiman, L 2001 Random forests. Machine learning, 45: 532. DOI: 10.1023/A:1010933404324
  5. Broersen, P M and de Waele, S 2000 Some benefits of aliasing in time series analysis. In European Signal Processing Conference (pp. 14). IEEE. https://ieeexplore.ieee.org/document/7075299
  6. Caminade, C, Kovats, S, Rocklov, J, Tompkins, A M, Morse, A P, Colón-González, F J, Stenlund, H, Martens, P and Lloyd, S J 2014 Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences, 111: 32863291. DOI: 10.1073/pnas.1302089111
  7. Cella, W, Baia-da Silva, D C, Melo, G C D, Tadei, W P, Sampaio, V D S, Pimenta, P, Lacerda, M V G and Monteiro, W M 2019 Do climate changes alter the distribution and transmission of malaria? Evidence assessment and recommendations for future studies. Revista da Sociedade Brasileira de Medicina Tropical, 52: e20190308. DOI: 10.1590/0037-8682-0308-2019
  8. Coetzee, M, Craig, M and Le Sueur, D 2000 Distribution of African malaria mosquitoes belonging to the anopheles gambiae complex. Parasitology Today, 16: 7477. DOI: 10.1016/S0169-4758(99)01563-X
  9. Dempster, A, Petitjean, F and Webb, G I 2020 Rocket: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery, 34: 14541495. DOI: 10.1007/s10618-020-00701-z
  10. Dempster, A, Schmidt, D F and Webb, G I 2021 Minirocket: A very fast (almost) deterministic transform for time series classification. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 248257). DOI: 10.1145/3447548.3467231
  11. Dempster, A, Schmidt, D F and Webb, G I 2023 Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Mining and Knowledge Discovery, 37(5): 127. DOI: 10.1007/s10618-023-00939-3
  12. Deng, H, Runger, G, Tuv, E and Vladimir, M 2013 A time series forest for classification and feature extraction. Information Sciences, 239: 142153. DOI: 10.1016/j.ins.2013.02.030
  13. Dowell, F E, Noutcha, A E and Michel, K 2011 The effect of preservation methods on predicting mosquito age by near infrared spectroscopy. The American Journal of Tropical Medicine and Hygiene, 85: 1093. DOI: 10.4269/ajtmh.2011.11-0438
  14. Fernandes, M S, Cordeiro, W and Recamonde-Mendoza, M 2021 Detecting Aedes Aegypti mosquitoes through audio classification with convolutional neural networks. Computers in Biology and Medicine, 129: 104152. DOI: 10.1016/j.compbiomed.2020.104152
  15. Fulcher, B D and Jones, N S 2017 HCTSA: A computational framework for automated time-series phenotyping using massive feature extraction. Cell Systems, 5: 527531. DOI: 10.1016/j.cels.2017.10.001
  16. González Jiménez, M, Babayan, S A, Khazaeli, P, Doyle, M, Walton, F, Reddy, E, Glew, T, Viana, M, Ranford-Cartwright, L, Niang, A, et al. 2019 Prediction of mosquito species and population age structure using mid-infrared spectroscopy and supervised machine learning. Wellcome Open Research, 4: 76. DOI: 10.12688/wellcomeopenres.15201.3
  17. Ismail Fawaz, H, Forestier, G, Weber, J, Idoumghar, L and Muller, P-A 2019 Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 33: 917963. DOI: 10.1007/s10618-019-00619-1
  18. Ismail Fawaz, H, Lucas, B, Forestier, G, Pelletier, C, Schmidt, D F, Weber, J, Webb, G I, Idoumghar, L, Muller, P-A and Petitjean, F 2020 Inceptiontime: Finding alexnet for time series classification. Data Mining and Knowledge Discovery, 34: 19361962 DOI: 10.1007/s10618-020-00710-y
  19. Johnson, B J, Hugo, L E, Churcher, T S, Ong, O T and Devine, G J 2020 Mosquito age grading and vector-control programmes. Trends in Parasitology, 36: 3951. DOI: 10.1016/j.pt.2019.10.011
  20. Johnson, J B 2020 An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests in stored grains. Journal of Stored Products Research, 86: 101558. DOI: 10.1016/j.jspr.2019.101558
  21. Kahn, M C, Celestin, W and Offenhauser, W 1945 Recording of sounds produced by certain disease-carrying mosquitoes. Science, 101: 335336. DOI: 10.1126/science.101.2622.335
  22. Lawrence, S, Giles, C L, Tsoi, A C and Back, A D 1997 Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 8: 98113. DOI: 10.1109/72.554195
  23. LeCun, Y, Bengio, Y and Hinton, G 2015 Deep learning. Nature, 521: 436444. DOI: 10.1038/nature14539
  24. Lima, F T and Souza, V M A 2023 A large comparison of normalization methods on time series. Big Data Research, 34: 100407. DOI: 10.1016/j.bdr.2023.100407
  25. Lines, J, Taylor, S and Bagnall, A 2018 Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles. ACM Transactions on Knowledge Discovery from Data, 12: 135. DOI: 10.1145/3182382
  26. Lubba, C H, Sethi, S S, Knaute, P, Schultz, S R, Fulcher, B D and Jones, N S 2019 Catch22: Canonical time-series characteristics: Selected through highly comparative time-series analysis. Data Mining and Knowledge Discovery, 33: 18211852. DOI: 10.1007/s10618-019-00647-x
  27. Lubinda, J, Haque, U, Bi, Y, Hamainza, B and Moore, A J 2021 Near-term climate change impacts on sub-national malaria transmission. Scientific Reports, 11: 751. DOI: 10.1038/s41598-020-80432-9
  28. Main, F 1909 La destruction des fourmis blanches. Journal d’Agriculture Tropicale, 101: 350.
  29. Mankin, R W, Hagstrum, D W, Smith, M T, Roda, A and Kairo, M T 2011 Perspective and promise: A century of insect acoustic detection and monitoring. American Entomologist, 57: 3044. DOI: 10.1093/ae/57.1.30
  30. Mayagaya, V S, Michel, K, Benedict, M Q, Killeen, G F, Wirtz, R A, Ferguson, H M and Dowell, F E 2009 Non-destructive determination of age and species of Anopheles gambiae sl using near-infrared spectroscopy. The American Journal of Tropical Medicine and Hygiene, 81: 622630. DOI: 10.4269/ajtmh.2009.09-0192
  31. Middlehurst, M, Large, J and Bagnall, A 2020 The canonical interval forest (CIF) classifier for time series classification. In IEEE International Conference on Big Data (pp. 188195). IEEE. DOI: 10.1109/BigData50022.2020.9378424
  32. Middlehurst, M, Large, J, Flynn, M, Lines, J, Bostrom, A and Bagnall, A 2021 Hive-cote 2.0: A new meta ensemble for time series classification. Machine Learning, 110: 32113243. DOI: 10.1007/s10994-021-06057-9
  33. Modu, B, Polovina, N, Lan, Y, Konur, S, Asyhari, A T and Peng, Y 2017 Towards a predictive analytics-based intelligent malaria outbreak warning system. Applied Sciences, 7: 836. DOI: 10.3390/app7080836
  34. Moore, A 1991 Artificial neural network trained to identify mosquitoes in flight. Journal of Insect Behavior, 4: 391396. DOI: 10.1007/BF01048285
  35. Mwanga, E P, Mapua, S A, Siria, D J, Ngowo, H S, Nangacha, F, Mgando, J, Baldini, F, González Jiménez, M, Ferguson, H M, Wynne, K, et al. 2019 Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, anopheles arabiensis. Malaria Journal, 18: 19. DOI: 10.1186/s12936-019-2822-y
  36. Parmezan, A R, Souza, V M, Žliobaitė, I and Batista, G E 2021 Changes in the wing-beat frequency of bees and wasps depending on environmental conditions: A study with optical sensors. Apidologie, 52: 731748. DOI: 10.1007/s13592-021-00860-y
  37. Potamitis, I and Rigakis, I 2016 Large aperture optoelectronic devices to record and time-stamp insects’ wingbeats. IEEE Sensors Journal, 16: 60536061. DOI: 10.1109/JSEN.2016.2574762
  38. Ritchie, S A, Devine, G J, Vazquez-Prokopec, G M, Lenhart, A E, Manrique-Saide, P and Scott, T W 2021 Insecticide-based approaches for dengue vector control. In Ecology and Control of Vector-Borne Diseases (pp. 380390). Wageningen Academic Publishers. DOI: 10.3920/978-90-8686-895-7_4
  39. Santolamazza, F, Mancini, E, Simard, F, Qi, Y, Tu, Z and della Torre, A 2008 Insertion polymorphisms of sine200 retrotransposons within speciation islands of anopheles gambiae molecular forms. Malaria Journal, 7: 110. DOI: 10.1186/1475-2875-7-163
  40. Sarker, I H 2021 Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2: 420. DOI: 10.1007/s42979-021-00815-1
  41. Silva, D F, Souza, V M A, Ellis, D P W, Keogh, E J and Batista, G 2015 Exploring low-cost laser sensors to identify flying insect species: Evaluation of machine learning and signal processing methods. Journal of Intelligent & Robotic Systems, 80: 313330. DOI: 10.1007/s10846-014-0168-9
  42. Siria, D J, Sanou, R, Mitton, J, Mwanga, E P, Niang, A, Sare, I, Johnson, P C, Foster, G M, Belem, A M, Wynne, K, et al. 2022 Rapid age-grading and species identification of natural mosquitoes for malaria surveillance. Nature Communications, 13: 1501 DOI: 10.1038/s41467-022-28980-8
  43. Souza, V M A 2017 Identifying Aedes Aegypti mosquitoes by sensors and one-class classifiers. In Iberoamerican Congress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (pp. 1018). Springer. DOI: 10.1007/978-3-319-52277-7_2
  44. Souza, V M A, dos Reis, D M, Maletzke, A G and Batista, G 2020 Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, 34: 18051858. DOI: 10.1007/s10618-020-00698-5
  45. Souza, V M A, Silva, D F and Batista, G E A P A 2014 Extracting texture features for time series classification. In International Conference on Pattern Recognition (pp. 14251430). DOI: 10.1109/ICPR.2014.254
  46. Sriwichai, P, Karl, S, Samung, Y, Sumruayphol, S, Kiattibutr, K, Payakkapol, A, Mueller, I, Yan, G, Cui, L and Sattabongkot, J 2015 Evaluation of CDC light traps for mosquito surveillance in a malaria endemic area on the Thai-Myanmar border. Parasites & Vectors, 8: 110. DOI: 10.1186/s13071-015-1225-3
  47. Syarif, I, Prugel-Bennett, A and Wills, G 2016 Svm parameter optimization using grid search and genetic algorithm to improve classification performance. Telecommunication Computing Electronics and Control, 14: 15021509 DOI: 10.12928/telkomnika.v14i4.3956
  48. Szegedy, C, Ioffe, S, Vanhoucke, V and Alemi, A 2017 Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 42784284). DOI: 10.1609/aaai.v31i1.11231
  49. Wang, Z, Yan, W and Oates, T 2017 Time series classification from scratch with deep neural networks: A strong baseline. In International Joint Conference on Neural Networks (pp. 15781585). DOI: 10.1109/IJCNN.2017.7966039
  50. World Health Organization (WHO) 2023 World Health Organization (WHO): World malaria report 2023 Available at https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 Last accessed December 2023.
  51. Zhao, B, Lu, H, Chen, S, Liu, J and Wu, D 2017 Convolutional neural networks for time series classification. Journal of Systems Engineering and Electronics, 28: 162169. DOI: 10.21629/JSEE.2017.01.18
  52. Zhao, Z-Q, Zheng, P, Xu, S-t and Wu, X 2019 Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30: 32123232. DOI: 10.1109/TNNLS.2018.2876865
  53. Zianni, M R, Nikbakhtzadeh, M R, Jackson, B T, Panescu, J and Foster, W A 2013 Rapid discrimination between anopheles gambiae ss and anopheles arabiensis by high-resolution melt (HRM) analysis. Journal of Biomolecular Techniques, 24: 1. DOI: 10.7171/jbt.13-2401-001
Language: English
Submitted on: Feb 17, 2024
|
Accepted on: Apr 13, 2024
|
Published on: May 1, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Lucas G. M. Castro, Henrique V. Costa, Vinicius M. A. Souza, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.