References
- Angwin, J, Larson, J, Mattu, S and Kirchner, L. 2016. Machine Bias. Propublica, 23 May. Available at
http://propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing . - Bartley, N, Abeliuk, A, Ferrera, E and Lerman, K. 2021. Auditing algorithmic bias on Twitter. In: Websci ’21: Proceedings of the 13th ACM Web Science Conference, Stuttgart, Germany on
21–25 June 2021 , pp. 65–73. DOI: 10.1145/3447535.3462491 - Beller, J. 2018. The message is murder: Substrates of computational capital. London: Pluto Press. DOI: 10.2307/j.ctt1x07z9t
- Bender, EM, Gebru, T, McMillan-Major, A and Shmitchell, S. 2021. On the dangers of stochastic parrots: Can language models be too big? In: FAccT ‘21: Proceedings of the 2021 ACM Conference on Fairness, Accountability and Transparency, Rio de Janeiro, Brazil on
3–10 March 2021 , pp. 610–623. DOI: 10.1145/3442188.3445922 - Benjamin, R. 2019. Race after technology: Abolitionist tools for the New Jim Code. London: Polity. DOI: 10.1093/sf/soz162
- Berardi, F. 2009. The soul at work. Cambridge: MIT Press.
- Boscarino, N, Cartwright, RA, Fox, K and Tsosie, KS. 2022. Federated learning and Indigenous genomic data sovereignty. Nature Machine Intelligence, 4(11): 909–911. DOI: 10.1038/s42256-022-00551-y
- Brynjolfsson, E and McAfee, A. 2014. The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York: WW Norton.
- Buolamwini, J and Gebru, T. 2018. Gender shades: Intersectional accuracy disparities in commercial gender classification. Proceedings of Machine Learning Research, 81: 77–91.
- Carroll, SR, Garba, I, Figueroa-Rodriguez, OL, Holbrook, J, Lovett, R, Materechera, S, Parsons, M, Raseroka, K, Rodriguez-Lonebear, D, Rowe, R, Sara, R, Walker, JD, Anderson, J and Hudson, M. 2020. The care principles for indigenous data governance. Data Science Journal, 19(4): 1–12. DOI: 10.5334/dsj-2020-043
- Checketts, L. 2022. Artificial intelligence and the marginalisation of the poor. Journal of Moral Theology, 11(1): 87–111. DOI: 10.55476/001c.34125
- Dewes, TK. 2017. He taonga ranei tēnei mea te raraunga – How is data a taonga? Report submitted for MAOR591 Directed Study. Hamilton, NZ: University of Waikato.
- Dourish, P. 2016. Algorithms and their others: Algorithmic culture in context. Big Data and Society, 3(2): 1–11. DOI: 10.1177/2053951716665128
- Dressel, J and Farid, H. 2018. The accuracy, fairness, and limits of predicting recidivism. Science Advances, 4(1): 1–5. DOI: 10.1126/sciadv.aao5580
- Grother, P, Ngan, M and Hanaoka, K. 2019. Face recognition vendor test (FRVT) Part 3: Demographic effects. National Institute of Standards and Technology. DOI: 10.6028/NIST.IR.8280
- Henderson, P, Hu, J, Romoff, J, Brunskill, E, Jurafsky, D and Pineau, J. 2020. Towards the systematic reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning Research, 21(248): 1–43.
- Hudson, ML, Anderson, T, Dewes, TK, Temara, P, Whaanga, H and Roa, T. 2017.
He Matapihi ki te Mana Raraunga: Conceptualising Big Data through a Māori lens . In: Whaanga, H, Keegan, TTAG and Apperley, M (eds.), He Whare Hangarau Māori – Language, culture & technology. pp. 64–73. Hamilton, New Zealand: Te Pua Wānanga ki te Ao / Faculty of Māori and Indigenous Studies, the University of Waikato. - Hudson, ML and Russel, K. 2009. The Treaty of Waitangi and research ethics in Aotearoa. Bioethical Inquiry, 6(1): 61–68. DOI: 10.1007/s11673-008-9127-0
- Huws, U. 2014. Labor in the Growing Digital Economy: The cybertariat comes of age. New York: NYU Press.
- Jackson, M. 2019.
In the end “the hope of decolonisation” . In: McKinley, A and Smith, LT (eds.), Handbook of Indigenous Education. Springer Nature. pp. 101–110. DOI: 10.1007/978-981-10-3899-0_59 - Jobin, A, Ienca, M and Vayena, E. 2019. The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9): 389–399. DOI: 10.1038/s42256-019-0088-2
- Kordzadeh, N and Ghasemaghaei, M. 2022. Algorithmic bias: Review, synthesis, and future research directions. European Journal of Information Systems, 31(3): 388–409. DOI: 10.1080/0960085X.2021.1927212
- Kukutai, T and Taylor, J. (eds.) 2016a. Indigenous data sovereignty: Toward an agenda, Vol. 38. Canberra, AU: ANU Press.
http://www.jstor.org/stable/j.ctt1q1crgf . DOI: 10.22459/CAEPR38.11.2016 - Kukutai, T and Taylor, J. 2016b.
Data sovereignty for indigenous peoples: Current practice and future needs . In: Kukutai, T and Taylor, J (eds.), Indigenous Data Sovereignty: Toward and Agenda, Vol. 38. Canberra, AU: ANU Press. DOI: 10.22459/CAEPR38.11.2016.01 - Kukutai, T, Cassim, S, Clark, V, Jones, N, Mika, J, Morar, R, Muru-Lanning, M, Pouwhare, R, Teague, V, Tuffery Huria, L, Watts, D and Sterling, R. 2023a. Māori data sovereignty and privacy. Tikanga in Technology discussion paper. Hamilton: Te Ngira Institute for Population Research.
- Kukutai, T, Campbell-Kamariera, K, Mead, A, Mikaere, K, Moses, C, Whitehead, J and Cormack, D. 2023b. Māori data Governance model. Te Kāhui Raraunga.
- Lambrecht, A and Tucker, C. 2019. Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. Management Science, 65(7): 2966–2981. DOI: 10.1287/mnsc.2018.3093
- Lamdan, S. 2022. Data Cartels: The Companies that Control and Monopolize Our Information. Stanford, CA: Stanford University Press. DOI: 10.1515/9781503633728
- Mackey, TK, Calac, AJ, Chenna Keshava, BS, Yracheta, J, Tsosie, KS and Fox, K. 2022. Establishing a blockchain-enabled Indigenous data sovereignty framework for genomic data. Cell, 185(15): 2626–2631. PMID: 35868267. DOI: 10.1016/j.cell.2022.06.030
- Martel, R, Shepherd, M and Goodyear-Smith, F. 2022. He awa whiria – A braided river: An indigenous Māori approach to mixed methods research. Journal of Mixed Methods Research, 16(1): 17–33. DOI: 10.1177/1558689820984028
- Martin, K. 2019. Designing ethical algorithms. MIS Quarterly Executive, 18(5):
2 . DOI: 10.17705/2msqe.00012 - Meijas, UA and Couldry, N. 2019. The costs of connection: How data is colonizing human life and appropriating it for capitalism. Stanford, CA: Stanford University Press. DOI: 10.1515/9781503609754
- Milne, BJ, Atkinson, J, Blakely, T, Day, H, Douwes, J, Gibb, S, Nicholson, M, Shackleton, N, Sporle, A, and Teng, A. 2019. Data resource profile: The New Zealand integrated data infrastructure (IDI). International Journal of Epidemiology, 48(3): 677–677e. DOI: 10.1093/ije/dyz014
- Moewaka Barnes, H and McCreanor, T. 2019. Colonisation, Hauora, and whenua in Aotearoa. Journal of the Royal Society of New Zealand, 49(1): 19–33. DOI: 10.1080/03036758.2019.1668439
- Munn, L. 2017. I am a driver-partner. Work, Organisation, Labour and Globalisation, 11(2): 7–20. DOI: 10.13169/workorgalaboglob.11.2.0007
- Munn, L. 2023.
The five tests: designing and evaluating AI according to indigenous Māori principles . AI & Society. DOI: 10.1007/s00146-023-01636-x - O’Neil, C. 2016. Weapons of math destruction: How big data increases inequality and threatens democracy. Broadway Books.
- Olhede, SC and Wolfe, PJ. 2018. The growing ubiquity of algorithms in society: Implications, impacts and innovations. Philosophical Transactions of the Royal Society A, 376(1):
20170364 . DOI: 10.1098/rsta.2017.0364 - Pool, I. 2016.
Colonialism’s and postcolonialism’s fellow traveller: The collection, use and misuse of data on indigenous people . In: Kukutai, T and Taylor, J (eds.), Indigenous Data Sovereignty: Toward an Agenda. ANU Press. pp 57–78. DOI: 10.22459/CAEPR38.11.2016.04 - Rainie, SC, Kukutai, T, Walter, M, Figueroa-Rodriguez, OL, Walker, J and Axelsson, P. 2019.
Issues in open data: Indigenous data sovereignty . In: Davies, T, Walker, S, Rubinstein, M and Perini, F (eds.), The State of Open Data: Histories and Horizons. Cape Town and Ottawa: African Minds and International Development Research Centre. pp. 300–319. - Smith, LT. 2012. Decolonising Methodologies: Research and Indigenous Peoples. 2nd Ed. Zed Books Ltd.
- Someh, I, Davern, M, Breidbach, CF and Shanks, G. 2019. Ethical issues in big data analytics: A stakeholder perspective. Communications of the Association of Information Systems, 44(1):
34 . DOI: 10.17705/1CAIS.04434 - Stats, NZ. 2018. Algorithm Assessment Report. Available from
https://data.govt.nz/use-data/analyse-data/government-algorithm-transparency . - Stats, NZ. 2020a. Ngā Tikanga Paihere: a framework guiding ethical and culturally appropriate data use. Available from
https://data.govt.nz/toolkit/data-ethics/nga-tikanga-paihere/ . - Stats, NZ. 2020b. Algorithm Charter for Aotearoa New Zealand. Available from
https://data.govt.nz/assets/data-ethics/algorithm/Algorithm-Charter-2020_Final-English-1.pdf . - Strubell, E, Ganesh, A and MacCallum, A. 2019. Energy and policy considerations for deep learning In: NLP. Proceedings of the 57th Annual Meeting of the Association of Computational Linguistics, pp. 3645–3650. DOI: 10.18653/v1/P19-1355
- Taylor Fry. 2021. Algorithm Charter for Aotearoa New Zealand: Year 1 review. Available at
https://www.data.govt.nz/assets/data-ethics/algorithm/Algorithm-Charter-Year-1-Review-FINAL.pdf . - Te Mana Raraunga. 2016. Te Mana Raraunga Māori Data Sovereignty Network Charter. Available at
https://static1.squarespace.com/static/58e9b10f9de4bb8d1fb5ebbc/t/5bda208b4ae237cd89ee16e9/1541021836126/TMR+Ma%CC%84ori+Data+Sovereignty+Principles+Oct+2018.pdf . - Waitangi Tribunal. 2011. Ko Aotearoa Tēnei (WAI 262). Wellington, NZ: Waitangi Tribunal. Available at
https://forms.justice.govt.nz/search/WT/reports/reportSummary.html . - Waitangi Tribunal. 2016. Report on the Trans-Pacific Partnership Agreement. Wellington, NZ: Waitangi Tribunal.
- Waitangi Tribunal. 2019. Hauora – Report on Stage One of the Health Services and Outcomes Kaupapa Inquiry (WAI 2575). Wellington, NZ: Waitangi Tribunal. pp 163–164.
- Walter, M and Anderson, C. 2013. Indigenous Statistics: A Quantitative Research Methodology. Left Coast Press, California.
- Walter, M and Kukutai, T. 2018.
Artificial intelligence and Indigenous data sovereignty . Input paper for the Horizon Scanning Project, “The Effective and Ethical Development of Artificial Intelligence: An Opportunity to Improve Our Wellbeing”. Australian Council of Learned Academies. Available atwww.acola.org . - Walter, M and Suina, M. 2019 Indigenous data, indigenous methodologies and indigenous data sovereignty. International Journal of Social Research Methodology, 22(3): 233–243. DOI: 10.1080/13645579.2018.1531228
- Waziyatawin and Yellow Bird, M. 2005. For Indigenous Eyes Only: A Decolonization Handbook 1. New Mexico, AZ: SAR Press.
- West, K, Wilson, D, Thompson, A and Hudson, M. 2020. Māori perspectives on trust and automated decision-making. Report for the Digital Council Aotearoa New Zealand.
- Will, P, Krpan, D and Lordan, G. 2023. People versus machines: introducing the HIRE framework. Artificial Intelligence Review, 56(1): 1071–1100. DOI: 10.1007/s10462-022-10193-6
- Yesiler, F, Marius, M, Serra, J and Gomez, E. 2022. Addressing algorithmic biases for musical version identification. In: WSDM ’22: Proceedings of the 15th ACM International Conference on Web Search and Data Mining, pp. 1284–1290. DOI: 10.1145/3488560.3498397
