References
- 1Boneva, I, Labra Gayo, JE, Prud’hommeaux, EG. 2017.
Semantics and Validation of Shapes Schemas for RDF . In: d’Amato, C., et al. (eds.), The Semantic Web – ISWC 2017. ISWC 2017. Lecture Notes in Computer Science, 10587. Cham: Springer. DOI: 10.1007/978-3-319-68288-4_7 - 2Cardoso, J, Castro, LJ, Ekaputra, FJ, Jacquemot, MC, Suchanek, M, Miksa, T and Borbinha, J. 2022. DCSO: Towards an ontology for machine-actionable data management plans. Journal of Biomedical Semantics, 13(21). DOI: 10.1186/s13326-022-00274-4
- 3Clarke, D, Wang, L, Jones, A, Wojciechowicz, M, Torre, D, Jagodnik, K, Jenkins, S, McQuilton, P, Flamholz, Z, Silverstein, M, Schilder, B, Robasky, K, Castillo, C, Idaszak, R, Ahalt, S, Williams, J, Schurer, S, Cooper, D, de Miranda-Azevedo, R, Klenk, J, Haendel, M, Nedzel, J, Avillach, P, Shimoyama, M, Harris, R, Gamble, M, Poten, R, Charbonneau, A, Larkin, J, Brown, C, Bonazzi, V, Dumontier, M, Sansone, SA and Ma’ayan, A. 2019. Fairshake: Toolkit to evaluate the fairness of research digital resources. Cell Systems, 9(5): 417–421. DOI: 10.1016/j.cels.2019.09.011
- 4Devaraju, A and Huber, R. 2022. F-uji – An automated fair data assessment tool (v1.0.0). Available at
https://zenodo.org/record/4063720 [Last accessed 03 August 2023]. - 5Science Europe. 2021. Practical Guide to the International Alignment of Research Data Management – Extended Edition. Available at
https://zenodo.org/record/4915862 [Last accessed 03 August 2023]. - 6Fajcik, M, Jon, J and Smrz, P. 2021. Rethinking the objectives of extractive question answering. In: Proceedings of the 3rd Workshop on Machine Reading for Question Answering. Punta Cana:
Dominican Republic, Association for Computational Linguistics , pp. 14–27. November:https://aclanthology.org/2021.mrqa-1.2 - 7Florian, B and Martin, K. 2012. Linked Open Data: The Essentials – A Quick Start Guide for Decision Makers. Vienna: Ed. mono/monochrom.
- 8Foidl, R, Brugger, LS and Miksa, T. 2021. Automating Evaluation of Machine-Actionable Data Management Plans with Semantic Web Technologies. In: DaMaLOS – 2nd Workshop on Data and Research Objects Management for Linked Open Science, Co-located at the International Semantic Web Conference ISWC 2021.
PUBLISSO ,24 October 2021 , pp. 1–13. DOI: 10.4126/FRL01-006429413 - 9Hicks, D, Wouters, P, Waltman, L, de Rijcke, S and Rafols, I. 2015. Bibliometrics: The leiden manifesto for research metrics. Nature News, 520(7548): 429. DOI: 10.1038/520429a
- 10Hogan, A, Blomqvist, E, Cochez, M, D’amato, C, Melo, GD, Gutierrez, C, Kirrane, S, Gayo, JEL, Navigli, R, Neumaier, S, Ngomo, ACN, Polleres, A, Rashid, SM, Rula, A, Schmelzeisen, L, Sequeda, J, Staab, S and Zimmermann, A. 2021. Knowledge graphs. ACM Comput. Surv, 54(4): 1–37. DOI: 10.1145/3447772
- 11Kontokostas, D, Westphal, P, Auer, S, Hellmann, S, Lehmann, J, Cornelissen, R and Zaveri, A. 2014. Test-driven evaluation of linked data quality. In: Proceedings of the 23rd International Conference on World Wide Web. WWW’14,
Association for Computing Machinery , New York, NY, pp. 747–758. DOI: 10.1145/2566486.2568002 - 12Manghi, P, Bardi, A, Atzori, C, Baglioni, M, Manola, N, Schirrwagen, J and Principe, P. 2019. The openaire research graph data model (1.3). Available at:
https://zenodo.org/record/2643199 [Last accessed 03 August 2023]. - 13Manghi, P, Mannocci, A, Osborne, F, Sacharidis, D, Salatino, A and Vergoulis, T. 2021. New trends in scientific knowledge graphs and research impact assessment. Quantitative Science Studies, 2(4): 1296–1300. DOI: 10.1162/qss_e_00160
- 14Miksa, T, Oblasser, S and Rauber, A. 2021. Automating research data management using machine-actionable data management plans. ACM Trans Manage Inf Syst, 13(2): 1–22. DOI: 10.1145/3490396
- 15Miksa, T, Simms, S, Mietchen, D and Jones, S. 2019. Ten principles for machine-actionable data management plans. PLoS computational biology, 15(3):
e1006750 . DOI: 10.1371/journal.pcbi.1006750 - 16Miksa, T, Walk, P and Neish, P. 2020. RDA DMP common standard for machine-actionable data management plans. Available at: DOI: 10.15497/rda00039 [Last accessed 03 August 2023].
- 17Miksa, T, Walk, P, Neish, P, Oblasser, S, Murray, H, Renner, T, Jacquemot-Perbal, MC, Cardoso, J, Kvamme, T, Praetzellis, M, Suchánek, M, Hooft, R, Faure, B, Moa, H, Hasan, A and Jones, S. 2021. Application profile for machine-actionable data management plans. CODATA Data Science Journal, 20(1): 32. DOI: 10.5334/dsj-2021-032
- 18Pergl, R, Hooft, R, Suchánek, M, Knaisl, V and Slifka, J. 2019. ‘Data stewardship wizard’: A tool bringing together researchers, data stewards, and data experts around data management planning. Data Science Journal, 18(1): 59. DOI: 10.5334/dsj-2019-059
- 19Sansone, S, McQuilton, P, Rocca-Serra, P, Gonzalez-Beltran, A, Izzo, M, Lister, A, Thurston, M and Community, F. 2019. Fairsharing as a community approach to standards, repositories and policies. Nature Biotechnology, 37(4): 358–367. DOI: 10.1038/s41587-019-0080-8
- 20Tao, J, Sirin, E, Bao, J and McGuinness, DL. 2010. Integrity constraints in owl. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI’10,
AAAI Press , Atlanta Georgia,July 11–15, 2010 , pp. 1443–1448. DOI: 10.1609/aaai.v24i1.7525 - 21Wilkinson, MD., Dumontier, M, Aalbersberg, IJ., Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, JW, da Silva Santos, LB, Bourne, PE, et al. 2016. The fair guiding principles for scientific data management and stewardship. Scientific data, 15(3): 160018. DOI: 10.1038/sdata.2016.18
- 22Wilkinson, MD, Dumontier, M, Sansone, SA, Olavo, L, Prieto, M, Batista, D, McQuilton, P, Kuhn, T, Rocca-Serra, P, Crosas, M and Shultes, E. 2019. Evaluating fair maturity through a scalable, automated, community-governed framework. Nature-Springer Scientific Data, 6(174). DOI: 10.1038/s41597-019-0184-5
