Have a personal or library account? Click to login
A Study on the Application of Data Mining Techniques in the Management of Sustainable Education for Employment Cover

A Study on the Application of Data Mining Techniques in the Management of Sustainable Education for Employment

By: Fang Fang  
Open Access
|Jul 2023

References

  1. Abu Saa, A, Al-Emran, M and Shaalan, K. 2019. Factors affecting students’ performance in higher education: a systematic review of predictive data mining techniques. Technology, Knowledge and Learning, 24(4): 567598. DOI: 10.1007/s10758-019-09408-7
  2. Alguliyev, RM, Aliguliyev, RM and Sukhostat, LV. 2020. Efficient algorithm for big data clustering on single machine. CAAI Transactions on Intelligence Technology, 5(1): 914. DOI: 10.1049/trit.2019.0048
  3. Bağdatli, MEC and Dokuz, . 2021. Modeling discretionary lane-changing decisions using an improved fuzzy cognitive map with association rule mining. Transportation letters, 13(8): 623633. DOI: 10.1080/19427867.2021.1919469
  4. Da Costa, MB, Dos Santos, LMAL and Schaefer, JL. 2019. Industry 4.0 technologies basic network identification. Scientometrics, 121(2): 977994. DOI: 10.1007/s11192-019-03216-7
  5. Gupta, MK and Chandra, PA. 2020. Comprehensive survey of data mining. International Journal of Information Technology, 12(4): 12431257. DOI: 10.1007/s41870-020-00427-7
  6. He, Q. 2021. Research on promoting the employment of college graduates with ideological and political education in the New Situation. Advances in Educational Technology and Psychology, 5(3): 141145. DOI: 10.23977/aetp.2021.53020
  7. Hossain, MZ, et al. 2019. A dynamic K-means clustering for data mining. Indonesian Journal of Electrical Engineering and Computer Science, 13(2): 521526. DOI: 10.11591/ijeecs.v13.i2.pp521-526
  8. Jeong, YJ, Lee, J, Moon, J, Shin, JH and Lu, WD. 2018. K-means data clustering with memristor networks. Nano letters, 18(7): 44474453. DOI: 10.1021/acs.nanolett.8b01526
  9. Lakshmi, K, Visalakshi, NK and Shanthi, S. 2018. Data clustering using k-means based on crow search algorithm. Sādhanā, 43(11): 112. DOI: 10.1007/s12046-018-0962-3
  10. Laxmi Lydia, E, et al. 2020. Charismatic document clustering through novel K-Means non-negative matrix factorization (KNMF) algorithm using key phrase extraction. International Journal of Parallel Programming, 48(3): 496514. DOI: 10.1007/s10766-018-0591-9
  11. Liu, L, et al. 2021. An improved approach for mining association rules in parallel using Spark Streaming. International Journal of Circuit Theory and Applications, 49(4): 10281039. DOI: 10.1002/cta.2935
  12. Neysiani, BS, et al. 2019. Improve performance of association rule-based collaborative filtering recommendation systems using genetic algorithm. International Journal of Information Technology and Computer Science, 11(2): 4855. DOI: 10.5815/ijitcs.2019.02.06
  13. Safara, F, Souri, A and Serrizadeh, M. 2020. Improved intrusion detection method for communication networks using association rule mining and artificial neural networks. IET Communications, 14(7): 11921197. DOI: 10.1049/iet-com.2019.0502
  14. Salal, YK, Abdullaev, SM and Kumar, M. 2019. Educational data mining: Student performance prediction in academic. International Journal of Engineering and Advanced Tech, 8(4C): 5459.
  15. Shrifan, NHMM, Akbar, MF and Isa, NAM. 2022. An adaptive outlier removal aided k-means clustering algorithm. Journal of King Saud University-Computer and Information Sciences, 34(8): 63656376. DOI: 10.1016/j.jksuci.2021.07.003
  16. Subha, RP. 2019. Tree oriented association rule mining of multiple data sources. International Journal of Enterprise Network Management, 10(3–4): 272279. DOI: 10.1504/IJENM.2019.103156
  17. Sun, H. 2019. Study on application of data mining technology in university computer network educational administration management system. Journal of Intelligent & Fuzzy Systems, 37(3): 33113318. DOI: 10.3233/JIFS-179133
  18. Thottathyl, H, Kanadam, KP and Panchadula, RP. 2020. Microarray breast cancer data clustering using map reduce based K-Means algorithm. Rev. d’Intelligence Artif, 34(6): 763769. DOI: 10.18280/ria.340610
  19. Trakunphutthirak, R and Lee, VCS. 2022. Application of educational data mining approach for student academic performance prediction using progressive temporal data. Journal of Educational Computing Research, 60(3): 742776. DOI: 10.1177/07356331211048777
  20. Wang, C and Zheng, X. 2020. Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint. Evolutionary Intelligence, 13(1): 3949. DOI: 10.1007/s12065-019-00234-5
  21. Wang, L and Soo-Jin, C. 2021. Sustainable development of college and university education by use of data mining methods. International Journal of Emerging Technologies in Learning (Online), 16(5): 102. DOI: 10.3991/ijet.v16i05.20303
  22. Xia, Y. 2021. Big data based research on the management system framework of ideological and political education in colleges and universities. Journal of Intelligent & Fuzzy Systems, 40(2): 37773786. DOI: 10.3233/JIFS-189411
  23. Zhan, Y, Tan, KH and Huo, B. 2019. Bridging customer knowledge to innovative product development: a data mining approach. International Journal of Production Research, 57(20): 63356350. DOI: 10.1080/00207543.2019.1566662
Language: English
Submitted on: Feb 13, 2023
|
Accepted on: May 8, 2023
|
Published on: Jul 19, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Fang Fang, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.