Have a personal or library account? Click to login
Data Science as an Interdiscipline: Historical Parallels from Information Science Cover

Data Science as an Interdiscipline: Historical Parallels from Information Science

Open Access
|Jun 2023

References

  1. 1Academic Data Science Alliance. 2023. ADSA vision, mission, and values. Available at https://academicdatascience.org/data-science/mission/.
  2. 2Agre, PE. 1995. Institutional circuitry: Thinking about the forms and uses of information. Information Technology and Libraries, 14(4): 225230.
  3. 3Agre, PE. 1997. Toward a critical technical practice: Lessons learned in trying to reform AI. In: Bowker, G, Star, SL and Turner, B, Social Science, Technical Systems, and Cooperative Work: Beyond the Great Divide. Mahwah, NJ: Erlbaum. pp. 130157.
  4. 4Agre, PE. 2003. Information and institutional change: The case of digital libraries. In: Bishop, AP, Van House, NA and Buttenfield, BP, Digital Library Use: Social Practice in Design and Evaluation. Cambridge, MA: MIT Press. pp. 219240.
  5. 5Aragon, C, Guha, S, Kogan, M, Muller, M and Neff, G. 2022. Human-Centered Data Science: An Introduction. Cambridge, MA: MIT Press.
  6. 6Aspray, WF. 1985. The scientific conceptualization of information: A survey. IEEE Annals of the History of Computing, 7(2): 117140. DOI: 10.1109/MAHC.1985.10018
  7. 7Bates, MJ. 1999. The invisible substrate of information science. Journal of the American Society for Information Science, 50(12), 10431050. DOI: 10.1002/(SICI)1097-4571(1999)50:12<;1043::AID-ASI1>3.0.CO;2-X
  8. 8Bates, MJ. 2004. Information science at the University of California at Berkeley in the 1960s: A memoir of student days. Library Trends, 52(4): 683701. http://hdl.handle.net/2142/1693.
  9. 9Bates, MJ. 2015. The information professions: Knowledge, memory, heritage. Information Research, 20(1): paper 655. Available at http://InformationR.net/ir/20-1/paper655.html.
  10. 10Beaton, B, Acker, A, Di Monte, L, Setlur, S, Sutherland, T and Tracy, SE. 2017. Debating data science: A roundtable. Radical History Review, 2017(127): 133148. DOI: 10.1215/01636545-3690918
  11. 11Berman, F, Rutenbar, R, Christensen, H, Davidson, S, Estrin, D, Franklin, M, Hailpern, B, Martonosi, M, Raghavan, P, Stodden, V and Szalay, A. 2016. Realizing the Potential of Data Science: Final Report from the National Science Foundation Computer and Information Science and Engineering Advisory Committee Data Science Working Group. National Science Foundation Computer and Information Science and Engineering Advisory Committee Report. Available at https://www.nsf.gov/cise/ac-data-science-report/CISEACDataScienceReport1.19.17.pdf.
  12. 12Bezuidenhout, L, Drummond-Curtis, S, Walker, B, Shanahan, H and Alfaro-Córdoba, M. 2021. A school and a network: CODATA-RDA data science summer schools alumni survey. Data Science Journal, 20(1): 110. DOI: 10.5334/dsj-2021-010
  13. 13Blanchette, JF. 2012. Computing as if infrastructure mattered. Communications of the ACM, 55(10): 3234. DOI: 10.1145/2347736.2347748
  14. 14Blei, DM and Smyth, P. 2017. Science and data science. Proceedings of the National Academy of Sciences, 114(33): 86898692. DOI: 10.1073/pnas.1702076114
  15. 15Borgman, CL. 2015. Big Data, Little Data, No Data: Scholarship in the Networked World. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/9963.001.0001
  16. 16Borko, H. 1968. Information science: What is it? American Documentation, 19(1): 35. DOI: 10.1002/asi.5090190103
  17. 17Bowne-Anderson, H. 2018. What data scientists really do, according to 35 data scientists. Harvard Business Review, August 15, 2018. Available at https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists.
  18. 18Buckland, M. 2012. What kind of science can information science be? Journal of the American Society for Information Science and Technology, 63(1): 17. DOI: 10.1002/asi.21656
  19. 19Burke, C. 2007. History of information science. Annual Review of Information Science and Technology, 41(1): 353. DOI: 10.1002/aris.2007.1440410108
  20. 20Burke, CB. 2018. America’s Information Wars: The Untold Story of Information Systems in America’s Conflicts and Politics from World War II to the Internet Age. Lanham, MD: Rowman & Littlefield.
  21. 21Burnett, K and Bonnici, LJ. 2013. Rhizomes in the iField: What does it mean to be an iSchool? Knowledge Organization, 40(6): 408413. DOI: 10.5771/0943-7444-2013-6-408
  22. 22Bush, V. 1945. Science, the Endless Frontier: A Report to the President. Washington, DC: US Government Printing Office.
  23. 23Callaghan, S and Darbyshire, T. 2020. The first piece of the pattern. Patterns, 1(1): 100020. DOI: 10.1016/j.patter.2020.100020
  24. 24Cao, L. 2017. Data science: A comprehensive overview. ACM Computing Surveys, 50(3): 142. DOI: 10.1145/3076253
  25. 25Cao, L. 2018a. Data science challenges. In: Data Science Thinking. Dordrecht: Springer International Publishing. pp. 93128. DOI: 10.1007/978-3-319-95092-1_4
  26. 26Cao, L. 2018b. Data science education. In: Data Science Thinking. Dordrecht: Springer International Publishing. pp. 329348. DO: 10.1007/978-3-319-95092-1_11
  27. 27Capurro, R and Hjørland, B. 2003. The concept of information. Annual Review of Information Science and Technology, 37(1): 343411. DOI: 10.1002/aris.1440370109
  28. 28Carroll, SR, Garba, I, Figueroa-Rodríguez, O, et al. 2020. The CARE principles for Indigenous data governance. Data Science Journal, 19(1): 112. DOI: 10.5334/dsj-2020-043
  29. 29Carroll, SR, Herczog, E, Hudson, M, Russell, K and Stall, S. 2021. Operationalizing the CARE and FAIR principles for Indigenous data futures. Scientific Data, 8(1). DOI: 10.1038/s41597-021-00892-0
  30. 30Carson, C, et al. 2016. Data Science Planning Initiative Faculty Advisory Board Report. Berkeley: University of California. Available at https://drive.google.com/open?id=0B8gpOw0SuKG4cGR1NTZpTzBQRGM.
  31. 31Carter, D and Sholler, D. 2016. Data science on the ground: Hype, criticism, and everyday work. Journal of the Association for Information Science and Technology, 67(10): 23092319. DOI: 10.1002/asi.23563
  32. 32Chambers, JM. 1993. Greater or lesser statistics: A choice for future research. Statistics and Computing, 3: 182184. DOI: 10.1007/BF00141776
  33. 33Cleveland, WS. 2001. Data science: An action plan for expanding the technical areas of the field of statistics. International Statistical Review, 69(1): 2126. DOI: 10.2307/1403527
  34. 34CODATA. 2012. CODATA Constitution (Statutes and By-Laws). Paris: CODATA. Available at http://www.codata.org/uploads/Constitution%202012%20Revised%20Final%20(2).pdf.
  35. 35Conway, D. 2010. The data science Venn diagram. Available at http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram.
  36. 36Conway, D. 2018. DataFramed. #15 Building Data Science Teams. March 25, 2018. Available at https://podcastaddict.com/episode/49574942.
  37. 37Cornelius, I. 2002. Theorizing information for information science. Annual Review of Information Science and Technology, 36(1): 392425. DOI: 10.1002/aris.1440360110
  38. 38Cox, RJ, Mattern, E, Mattock, L, Rodriguez, R and Sutherland, T. 2012. Assessing iSchools. Journal of Education for Library and Information Science, 53(4): 303316. https://www.jstor.org/stable/43686923.
  39. 39Craig Finlay, S, Ni, C and Sugimoto, C. 2018. Different mysteries, different lore: An examination of inherited referencing behaviors in academic mentoring. Library & Information Science Research, 40(3–4): 277284. DOI: 10.1016/j.lisr.2018.09.010
  40. 40Cutcher-Gershenfeld, J, et al. 2017. Five ways consortia can catalyse open science. Nature, 543(7647): 615617. DOI: 10.1038/543615a
  41. 41Davenport, TH and Patil, DJ. 2012. Data scientist: The sexiest job of the 21st century. Harvard Business Review, October 2012. Available at https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century.
  42. 42Day, RE. 2000. The “conduit metaphor” and the nature and politics of information studies. Journal of the American Society for Information Science, 51(9): 805811. DOI: 10.1002/(SICI)1097-4571(2000)51:9<;805::AID-ASI30>3.0.CO;2-C
  43. 43Day, RE. 2009. Information explosion. In: Bates, MJ and Niles Maack, M (eds.), Encyclopedia of Library and Information Sciences, 3rd ed. Boca Raton, FL: CRC Press. pp. 24162420. DOI: 10.1081/E-ELIS3-120044391
  44. 44De Solla Price, DJ and Beaver, D. 1966. Collaboration in an invisible college. American Psychologist, 21(11): 10111018. DOI: 10.1037/h0024051
  45. 45De Veaux, RD, et al. 2017. Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application, 4: 1530. DOI: 10.1146/annurev-statistics-060116-053930
  46. 46Demchenko, Y, et al. 2016. EDISON Data Science Framework: A foundation for building data science profession for research and industry. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). December 12–15, 2016, Luxembourg. Piscataway, NJ: IEEE. pp. 620626. DOI: 10.1109/CloudCom.2016.0107
  47. 47Donoho, D. 2017. 50 Years of data science. Journal of Computational and Graphical Statistics, 26(4): 745766. DOI: 10.1080/10618600.2017.1384734
  48. 48EDISON Project. 2017. EDISON Data Science Framework (EDSF). Available at http://edison-project.eu/edison/edison-data-science-framework-edsf.
  49. 49Farkas-Conn, IS. 1990. From Documentation to Information Science: The Beginnings and Early Development of the American Documentation Institute–American Society for Information Science. New York: Greenwood Press.
  50. 50Fayyad, U and Hamutcu, H. 2022. From unicorn data scientist to key roles in data science: Standardizing roles. Harvard Data Science Review, 4(3). DOI: 10.1162/99608f92.008b5006
  51. 51Feder, T. 2016. Data science can be an attractive career for physicists. Physics Today, 69(8): 2022. DOI: 10.1063/PT.3.3261
  52. 52Finzer, W. 2013. The data science education dilemma. Technology Innovations in Statistics Education, 7(2): 19. https://escholarship.org/uc/item/7gv0q9dc. DOI: 10.5070/T572013891
  53. 53Floridi, L. 2005. Is semantic information meaningful data? Philosophy and Phenomenological Research, 70(2): 351370. DOI: 10.1111/j.1933-1592.2005.tb00531.x
  54. 54Floridi, L and Taddeo, M. 2016. What is data ethics? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2083): 20160360. DOI: 10.1098/rsta.2016.0360
  55. 55Fowler, R. 2015. Visualizing data science. GeoSpace blog. December 22, 2015. American Geophysical Union. Available at https://blogs.agu.org/geospace/2015/12/22/visualizing-data-science/.
  56. 56Fox, G, Maini, S, Rosenbaum, H and Wild, D. 2015. Data science and online education. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom). November 30, 2015–December 3, 2015, Vancouver, BC, Canada. Piscataway, NJ: IEEE. DOI: 10.1109/CloudCom.2015.82
  57. 57Fox, P and Hendler, J. 2014. The science of data science. Big Data, 2(2): 6870. DOI: 10.1089/big.2014.0011
  58. 58Frické, M. 2019. The knowledge pyramid: The DIKW hierarchy. Knowledge Organization 49(1): 3346. Also available in Hjørland, B and Gnoli, C (eds.), ISKO Encyclopedia of Knowledge Organization. Available at http://www.isko.org/cyclo/dikw. DOI: 10.5771/0943-7444-2019-1-33
  59. 59Frohmann, B. 2004. Deflating Information: From Science Studies to Documentation. Toronto: University of Toronto Press. DOI: 10.3138/9781442673779
  60. 60Furner, J. 2004. Information studies without information. Library Trends, 52(3): 427446. http://hdl.handle.net/2142/1684.
  61. 61Furner, J. 2016. “Data”: The data. In: Kelly, M and Bielby, J, Information Cultures in the Digital Age: A Festschrift in Honor of Rafael Capurro. Dordrecht: Springer. pp. 287306. DOI: 10.1007/978-3-658-14681-8
  62. 62Furner, J. 2017. Philosophy of data: Why? Education for Information, 33(1): 5570. DOI: 10.3233/EFI-170986
  63. 63Geiger, RS, Cabasse, C, Cullens, CY, Norén, L, Fiore-Gartland, B, Das, D and Brady, H. 2018. Career Paths and Prospects in Academic Data Science: Report of the Moore-Sloan Data Science Environments Survey. Berkeley,, CA: UC-Berkeley Institute for Data Science. DOI: 10.31235/osf.io/xe823
  64. 64Geoghegan, BD. 2008. Historiographic conceptualization of information: A critical survey. IEEE Annals of the History of Computing, 30(1): 6681. DOI: 10.1109/MAHC.2008.9
  65. 65Gil, Y. 2017. Thoughtful artificial intelligence: Forging a new partnership for data science and scientific discovery. Data Science, 1(1–2): 119129. DOI: 10.3233/DS-170011
  66. 66Gorichanaz, T. 2017. Applied epistemology and understanding in information studies. Information Research, 22(4): paper 776. Available at http://InformationR.net/ir/22-4/paper776.html.
  67. 67Gray, J, Gerlitz, C and Bounegru, L. 2018. Data infrastructure literacy. Big Data & Society, 5(2): 205395171878631. DOI: 10.1177/2053951718786316
  68. 68Green, B. 2018. Data Science as Political Action: Grounding Data Science in a Politics of Justice. arXiv:1811.03435. Ithaca,, NY: Cornell University. https://arxiv.org/abs/1811.03435.
  69. 69Hammarfelt, B. 2019. Discipline. In: Hjørlan B and Gnoli, C, Encyclopedia of Knowledge Organization. International Society of Knowledge Organization. Available at https://www.isko.org/cyclo/discipline.
  70. 70Hendler, J, Ding, Y and Mons, B. 2019. A journal for human and machine. Data Intelligence, 1(1): 15. DOI: 10.1162/dint_e_00001
  71. 71Herner, S. 1984. Brief history of information science. Journal of the American Society for Information Science, 35(3): 157163. DOI: 10.1002/asi.4630350308
  72. 72Hildreth, CR and Koenig, M. 2002. Organizational realignment of LIS programs in academia: From independent standalone units to incorporated programs. Journal of Education for Library and Information Science, 43(2): 126133. DOI: 10.2307/40323973
  73. 73Hjørland, B. 2013. Information science and its core concepts: Levels of disagreement. In: lbekwe-SanJuan, F and Dousa, T, Theories of Information, Communication and Knowledge. Studies in History and Philosophy of Science, vol. 34. Dordrecht: Springer. pp. 205235. DOI: 10.1007/978-94-007-6973-1_9
  74. 74Hjørland, B. 2018. Data (with big data and database semantics). Knowledge Organization, 45(8): 685708. Also available in Hjørland, B and Gnoli, C (eds.), ISKO Encyclopedia of Knowledge Organization. Available at http://www.isko.org/cyclo/data. DOI: 10.5771/0943-7444-2018-8-685
  75. 75Huutoniemi, K, Klein, JT, Bruun, H and Hukkinen, J. 2010. Analyzing interdisciplinarity: Typology and indicators. Research Policy, 39(1): 7988. DOI: 10.1016/j.respol.2009.09.011
  76. 76Iwata, S. 2008. Editor’s note: Scientific “agenda” of data science. Data Science Journal, 7: 5456. DOI: 10.2481/dsj.7.54
  77. 77Jacobs, JA. 2013. In Defense of Disciplines: Interdisciplinarity and Specialization in the Research University. Chicago, IL: University of Chicago Press. DOI: 10.7208/chicago/9780226069463.001.0001
  78. 78Johnson, NR. 2017. Rhetoric and the Cold War politics of information science. Journal of the Association for Information Science and Technology, 68(6): 13751384. DOI: 10.1002/asi.23866
  79. 79Keegan, B. 2016. Journalism as a professional model for data science. Blog post, February 9, 2016. Available at https://www.brianckeegan.com/2016/02/journalism-as-a-professional-model-for-data-science/.
  80. 80Keller, SA, Shipp, SS, Schroeder, AD and Korkmaz, G. 2020. Doing data science: A framework and case study. Harvard Data Science Review, 2(1). DOI: 10.1162/99608f92.2d83f7f5
  81. 81King, JL. 2006. Identity in the I-School movement. Bulletin of the American Society for Information Science and Technology, 32(4). Available at http://asis.org/Bulletin/Apr-06/king.html. DOI: 10.1002/bult.2006.1720320406.
  82. 82Klein, JT. 1996. Crossing Boundaries: Knowledge, Disciplinarities, and Interdisciplinarities. Charlottesville: University Press of Virginia.
  83. 83Kline, R. 2004. What is information theory a theory of? Boundary work among information theorists and information scientists in the United States and Britain during the Cold War. In: Rayward, WB and Bowden, ME, Conference on the History and Heritage of Scientific and Technological Information Systems. Medford, NJ: Information Today. pp. 1528.
  84. 84Knorr-Cetina, KD. 1991. Epistemic cultures: Forms of reason in science. History of Political Economy, 23: 105122. DOI: 10.1215/00182702-23-1-105
  85. 85Kross, S and Guo, PJ. 2019. Practitioners teaching data science in industry and academia: Expectations, workflows, and challenges. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). May 4–9, 2019, Glasgow, Scotland. New York: ACM. DOI: 10.1145/3290605.3300493
  86. 86Kross, S, Peng, RD, Caffo, BS, Gooding, I and Leek, JT. 2019. The democratization of data science education. American Statistician, 74(1): 17. DOI: 10.1080/00031305.2019.1668849
  87. 87Larsen, RL. 2008. History of the iSchools. Available at https://ischoolsinc.wildapricot.org/resources/Documents/Member_Info_Resources/Coorporate%20Documents/History-of-the-iSchools-2009.pdf.
  88. 88Lenoir, T. 1997. Instituting Science: The Cultural Production of Scientific Disciplines. Stanford,, CA: Stanford University Press. DOI: 10.1515/9781503616059
  89. 89Leonelli, S. 2015. What counts as scientific data? A relational framework. Philosophy of Science, 82(5): 810821. DOI: 10.1086/684083
  90. 90Lide, DR and Wood, GH. 2012. CODATA @ 45 Years: The Story of the ICSU Committee on Data for Science and Technology (CODATA) from 1966 to 2010. Paris: CODATA. Available at http://www.codata.org/publications/codata-history.
  91. 91Ma, X. 2023. Data science for geoscience: Recent progress and future trends from the perspective of a data life cycle. In: Ma, X, Mookerjee, M, Hsu, L and Hills, D, Recent Advancement in Geoinformatics and Data Science. Boulder, CO: Geological Society of America. DOI: 10.1130/2022.2558(05)
  92. 92Maack, MN. 1997. Toward a new model of the information professions: Embracing empowerment. Journal of Education for Library and Information Science, 38(4): 283302. DOI: 10.2307/40324190
  93. 93Madsen, D. 2016. Liberating interdisciplinarity from myth: An exploration of the discursive construction of identities in information studies. Journal of the Association for Information Science and Technology, 67(11): 26972709. DOI: 10.1002/asi.23622
  94. 94Madsen, D. 2017. Conspicuous by presence: The empty signifier “interdisciplinarity” and the representation of absence. In: Schröter, M and Taylor, C, Exploring Silence and Absence in Discourse. Cham, Switzerland: Springer International Publishing. pp. 359390. DOI: 10.1007/978-3-319-64580-3_13
  95. 95Manyika, J, Chui, M, Brown, B, Bughin, J, Dobbs, R, Roxburgh, C and Byers, AH. 2011. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, May 1, 2011. Available at http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation.
  96. 96Marchionini, G. 2023. Information and data sciences: Context, units of analysis, meaning, and human impact. Data and Information Management, 7(1). DOI: 10.1016/j.dim.2023.100031
  97. 97Mattmann, CA. 2013. Computing: A vision for data science. Nature, 493: 473475. DOI: 10.1038/493473a
  98. 98Mayernik, MS. 2016. Research data and metadata curation as institutional issues. Journal of the Association for Information Science and Technology, 67(4): 973993. DOI: 10.1002/asi.23425
  99. 99McQuillan, D. 2018a. Data science as machinic Neoplatonism. Philosophy & Technology, 31: 253272. DOI: 10.1007/s13347-017-0273-3
  100. 100McQuillan, D. 2018b. People’s councils for ethical machine learning. Social Media + Society, 4(2). DOI: 10.1177/2056305118768303
  101. 101Meng, XL. 2019. Data science: An artificial ecosystem. Harvard Data Science Review, 1(1). DOI: 10.1162/99608f92.ba20f892
  102. 102Mezey, PG, Warburton, P, Jako, E and Szekeres, Z. 2001. Dimension concepts and reduced dimensions in toxicological QShAR databases as tools for data quality assessment. Journal of Mathematical Chemistry, 30(4): 375387. DOI: 10.1023/A:1015138426162
  103. 103Miller, S and Hughes, D. 2017. The Quant Crunch: How the Demand for Data Science Skills is Disrupting the Job Market. Boston: Burning Glass Technologies. http://www.bhef.com/sites/default/files/bhef_2017_quant_crunch.pdf.
  104. 104Monroe-White, T. 2022. Emancipating data science for Black and Indigenous students via liberatory datasets and curricula. IASSIST Quarterly, 46(4): 18. DOI: 10.29173/iq1007
  105. 105Moore-Sloan Data Science Environments. 2018. Creating Institutional Change in Data Science. Available at http://msdse.org/files/Creating_Institutional_Change.pdf.
  106. 106NASEM. 2017. Envisioning the Data Science Discipline: The Undergraduate Perspective: Interim Report. Washington, DC: National Academies Press. DOI: 10.17226/24886
  107. 107NASEM. 2018. Data Science for Undergraduates: Opportunities and Options. Washington, DC: National Academies Press. DOI: 10.17226/25104
  108. 108Ortiz-Repiso, V, Greenberg, J and Calzada-Prado, J. 2018. A cross-institutional analysis of data-related curricula in information science programmes: A focused look at the iSchools. Journal of Information Science, 44(6): 768784. DOI: 10.1177/0165551517748149
  109. 109Ostler, LJ, Dahlin, TC and Willardson, JD. 1995. The Closing of American Library Schools: Problems and Opportunities. Westport, CT: Greenwood Press.
  110. 110Phillips, CJ. 2019. The bases of data. Harvard Data Science Review, 1(2). DOI: 10.1162/99608f92.5c483119
  111. 111Pierre, J. 2019. Building a digital family: Examining social media and social support in the development of youth “at-risk.” Unpublished thesis (PhD), University of California, Los Angeles, CA. Available at https://escholarship.org/uc/item/6c70b07v.
  112. 112Poirier, L. 2021. Reading datasets: Strategies for interpreting the politics of data signification. Big Data & Society, 8(2). DOI: 10.1177/20539517211029322
  113. 113Pournaras, E. 2017. Cross-disciplinary higher education of data science—beyond the computer science student. Data Science, 1(1/2): 117. DOI: 10.3233/DS-170005
  114. 114Press, G. 2013. A very short history of data science. Forbes, May 28, 2013. Available at https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/.
  115. 115Rayward, WB. 1996. The history and historiography of information science: Some reflections. Information Processing & Management, 32(1): 317. DOI: 10.1016/0306-4573(95)00046-J
  116. 116Ribes, D. 2018. STS, meet data science, once again. Science, Technology, & Human Values, 44(3): 514539. DOI: 10.1177/0162243918798899
  117. 117Richards, PS. 1994. Scientific Information in Wartime: The Allied-German Rivalry, 1939–1945. Westport, CT: Greenwood Press.
  118. 118Rosenberg, D. 2013. Data before the fact. In: Gitelman, L, “Raw Data” Is an Oxymoron. Cambridge, MA: MIT Press. pp. 1540.
  119. 119Rumble, J. 2023. Thoughts on Starting the CODATA Data Science Journal. Data Science Journal, 22: 13, 14. DOI: 10.5334/dsj-2023-013
  120. 120Saltz, J, Shamshurin, I and Connors, C. 2017. Predicting data science sociotechnical execution challenges by categorizing data science projects. Journal of the Association for Information Science and Technology, 68(12): 27202728. DOI: 10.1002/asi.23873
  121. 121Saracevic, T. 1997. Users lost: Reflections on the past, future, and limits of information science. ACM SIGIR Forum, 31(2): 1627. DOI: 10.1145/270886.270889
  122. 122Scheider, S, Nyamsuren, E, Kruiger, H and Xu, H. 2020. Why geographic data science is not a science. Geography Compass, 14(11): 115. DOI: 10.1111/gec3.12537
  123. 123Shannon, CE and Weaver, W. 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press.
  124. 124Shaw, R. 2019. The missing profession: Towards an institution of critical technical practice. Information Research, 24(4): paper colis1904. http://InformationR.net/ir/24-4/colis/colis1904.html.
  125. 125Shera, JH. 1970. Sociological Foundations of Librarianship. Bombay, India: Asia Publishing House.
  126. 126Smith, FJ. 2006. Data science as an academic discipline. Data Science Journal, 5: 163164. DOI: 10.2481/dsj.5.163
  127. 127Smith, FJ. 2023. The Launch of the Data Science Journal in 2002. Data Science Journal, 22: 11, 15. DOI: 10.5334/dsj-2023-11
  128. 128Soergel, D. 1999. The rise of ontologies or the reinvention of classification. Journal of the American Society for Information Science, 50(12): 11191120. DOI: 10.1002/(SICI)1097-4571(1999)50:12<;1119::AID-ASI12>3.0.CO;2-I
  129. 129Spang-Hanssen, H. 1970/2001. How to teach about information as related to documentation? HumanIT, 5(1). https://humanit.hb.se/article/view/168.
  130. 130Srinivasan, R. 2017. Whose Global Village? Rethinking How Technology Shapes Our World. New York: New York University Press.
  131. 131Stanton, J, Palmer, CL, Blake, C and Allard, S. 2012. Interdisciplinary data science education. In: Xiao, N and McEwen, LR, Special Issues in Data Management. ACS Symposium Series 1110. Washington, DC: American Chemical Society. pp. 97113. DOI: 10.1021/bk-2012-1110.ch006
  132. 132Statistics Views. 2013. Nate Silver: What I need from statisticians. Statistics Views, August 23, 2013. Available at https://www.statisticsviews.com/article/nate-silver-what-i-need-from-statisticians/.
  133. 133Stodden, V. 2020. The data science life cycle. Communications of the ACM, 63(7): 5866. DOI: 10.1145/3360646
  134. 134Stoyanovich, J and Lewis, A. 2019. Teaching Responsible Data Science: Charting New Pedagogical Territory. arXiv: 1912.10564. DOI: 10.1145/3360646
  135. 135Szostak, R. 2013. The state of the field: Interdisciplinary research. Issues in Interdisciplinary Studies, 31: 4465. http://hdl.handle.net/10323/4479.
  136. 136Tang, R and Sae-Lim, W. 2016. Data science programs in U.S. higher education: An exploratory content analysis of program description, curriculum structure, and course focus. Education for Information, 32(3): 269290. DOI: 10.3233/EFI-160977
  137. 137Van House, N and Sutton, SA. 1996. The panda syndrome: An ecology of LIS education. Journal of Education for Library and Information Science, 37(2): 131147. DOI: 10.2307/40324268
  138. 138Wenger, E. 1998. Communities of Practice: Learning, Meaning, and Identity. Cambridge, UK: Cambridge University Press. DOI: 10.1017/CBO9780511803932
  139. 139White, HD and McCain, KW. 1998. Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4): 327355. DOI: 10.1002/(SICI)1097-4571(19980401)49:4<;327::AID-ASI4>3.0.CO;2-4
  140. 140Wiggins, A and Sawyer, S. 2012. Intellectual diversity and the faculty composition of iSchools. Journal of the American Society for Information Science and Technology, 63(1): 821. DOI: 10.1002/asi.21619
  141. 141Wilkerson, MH and Polman, JL. 2019. Situating data science: Exploring how relationships to data shape learning. Journal of the Learning Sciences, 29(1): 110. DOI: 10.1080/10508406.2019.1705664
  142. 142Willems, K. 2017. The periodic table of data science. DataCamp Official Blog, April 12, 2017. https://web.archive.org/web/20220116104729/https://www.datacamp.com/community/blog/data-science-periodic-table.
  143. 143Wing, JM and Banks, D. 2019. Highlights of the inaugural data science leadership summit. Harvard Data Science Review, 1(2). DOI: 10.1162/99608f92.e45fcb79
  144. 144Wing, JM, Janeja, VP, Kloefkorn, T and Erickson, LC. 2018. Data Science Leadership Summit: Summary Report. New York: Columbia University. DOI: 10.13140/RG.2.2.13710.61764
  145. 145Zhang, Y, et al. Forthcoming. Data science curriculum in the iField. Journal of the Association for Information Science and Technology. DOI: 10.1002/asi.24701
Language: English
Submitted on: Mar 11, 2021
Accepted on: Mar 17, 2023
Published on: Jun 14, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Matthew S. Mayernik, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.