References
- 1Academic Data Science Alliance. 2023. ADSA vision, mission, and values. Available at
https://academicdatascience.org/data-science/mission/ . - 2Agre, PE. 1995. Institutional circuitry: Thinking about the forms and uses of information. Information Technology and Libraries, 14(4): 225–230.
- 3Agre, PE. 1997.
Toward a critical technical practice: Lessons learned in trying to reform AI . In: Bowker, G, Star, SL and Turner, B, Social Science, Technical Systems, and Cooperative Work: Beyond the Great Divide. Mahwah, NJ: Erlbaum. pp. 130–157. - 4Agre, PE. 2003.
Information and institutional change: The case of digital libraries . In: Bishop, AP, Van House, NA and Buttenfield, BP, Digital Library Use: Social Practice in Design and Evaluation. Cambridge, MA: MIT Press. pp. 219–240. - 5Aragon, C, Guha, S, Kogan, M, Muller, M and Neff, G. 2022. Human-Centered Data Science: An Introduction. Cambridge, MA: MIT Press.
- 6Aspray, WF. 1985. The scientific conceptualization of information: A survey. IEEE Annals of the History of Computing, 7(2): 117–140. DOI: 10.1109/MAHC.1985.10018
- 7Bates, MJ. 1999. The invisible substrate of information science. Journal of the American Society for Information Science, 50(12), 1043–1050. DOI: 10.1002/(SICI)1097-4571(1999)50:12<;1043::AID-ASI1>3.0.CO;2-X
- 8Bates, MJ. 2004. Information science at the University of California at Berkeley in the 1960s: A memoir of student days. Library Trends, 52(4): 683–701.
http://hdl.handle.net/2142/1693 . - 9Bates, MJ. 2015. The information professions: Knowledge, memory, heritage. Information Research, 20(1): paper 655. Available at
http://InformationR.net/ir/20-1/paper655.html . - 10Beaton, B, Acker, A, Di Monte, L, Setlur, S, Sutherland, T and Tracy, SE. 2017. Debating data science: A roundtable. Radical History Review, 2017(127): 133–148. DOI: 10.1215/01636545-3690918
- 11Berman, F, Rutenbar, R, Christensen, H, Davidson, S, Estrin, D, Franklin, M, Hailpern, B, Martonosi, M, Raghavan, P, Stodden, V and Szalay, A. 2016. Realizing the Potential of Data Science: Final Report from the National Science Foundation Computer and Information Science and Engineering Advisory Committee Data Science Working Group. National Science Foundation Computer and Information Science and Engineering Advisory Committee Report. Available at
https://www.nsf.gov/cise/ac-data-science-report/CISEACDataScienceReport1.19.17.pdf . - 12Bezuidenhout, L, Drummond-Curtis, S, Walker, B, Shanahan, H and Alfaro-Córdoba, M. 2021. A school and a network: CODATA-RDA data science summer schools alumni survey. Data Science Journal, 20(1): 1–10. DOI: 10.5334/dsj-2021-010
- 13Blanchette, JF. 2012. Computing as if infrastructure mattered. Communications of the ACM, 55(10): 32–34. DOI: 10.1145/2347736.2347748
- 14Blei, DM and Smyth, P. 2017. Science and data science. Proceedings of the National Academy of Sciences, 114(33): 8689–8692. DOI: 10.1073/pnas.1702076114
- 15Borgman, CL. 2015. Big Data, Little Data, No Data: Scholarship in the Networked World. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/9963.001.0001
- 16Borko, H. 1968. Information science: What is it? American Documentation, 19(1): 3–5. DOI: 10.1002/asi.5090190103
- 17Bowne-Anderson, H. 2018. What data scientists really do, according to 35 data scientists. Harvard Business Review, August 15, 2018. Available at
https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists . - 18Buckland, M. 2012. What kind of science can information science be? Journal of the American Society for Information Science and Technology, 63(1): 1–7. DOI: 10.1002/asi.21656
- 19Burke, C. 2007. History of information science. Annual Review of Information Science and Technology, 41(1): 3–53. DOI: 10.1002/aris.2007.1440410108
- 20Burke, CB. 2018. America’s Information Wars: The Untold Story of Information Systems in America’s Conflicts and Politics from World War II to the Internet Age. Lanham, MD: Rowman & Littlefield.
- 21Burnett, K and Bonnici, LJ. 2013. Rhizomes in the iField: What does it mean to be an iSchool? Knowledge Organization, 40(6): 408–413. DOI: 10.5771/0943-7444-2013-6-408
- 22Bush, V. 1945. Science, the Endless Frontier: A Report to the President. Washington, DC: US Government Printing Office.
- 23Callaghan, S and Darbyshire, T. 2020. The first piece of the pattern. Patterns, 1(1): 100020. DOI: 10.1016/j.patter.2020.100020
- 24Cao, L. 2017. Data science: A comprehensive overview. ACM Computing Surveys, 50(3): 1–42. DOI: 10.1145/3076253
- 25Cao, L. 2018a.
Data science challenges . In: Data Science Thinking. Dordrecht: Springer International Publishing. pp. 93–128. DOI: 10.1007/978-3-319-95092-1_4 - 26Cao, L. 2018b.
Data science education . In: Data Science Thinking. Dordrecht: Springer International Publishing. pp. 329–348. DO: 10.1007/978-3-319-95092-1_11 - 27Capurro, R and Hjørland, B. 2003. The concept of information. Annual Review of Information Science and Technology, 37(1): 343–411. DOI: 10.1002/aris.1440370109
- 28Carroll, SR, Garba, I, Figueroa-Rodríguez, O, et al. 2020. The CARE principles for Indigenous data governance. Data Science Journal, 19(1): 1–12. DOI: 10.5334/dsj-2020-043
- 29Carroll, SR, Herczog, E, Hudson, M, Russell, K and Stall, S. 2021. Operationalizing the CARE and FAIR principles for Indigenous data futures. Scientific Data, 8(1). DOI: 10.1038/s41597-021-00892-0
- 30Carson, C, et al. 2016. Data Science Planning Initiative Faculty Advisory Board Report. Berkeley: University of California. Available at
https://drive.google.com/open?id=0B8gpOw0SuKG4cGR1NTZpTzBQRGM . - 31Carter, D and Sholler, D. 2016. Data science on the ground: Hype, criticism, and everyday work. Journal of the Association for Information Science and Technology, 67(10): 2309–2319. DOI: 10.1002/asi.23563
- 32Chambers, JM. 1993. Greater or lesser statistics: A choice for future research. Statistics and Computing, 3: 182–184. DOI: 10.1007/BF00141776
- 33Cleveland, WS. 2001. Data science: An action plan for expanding the technical areas of the field of statistics. International Statistical Review, 69(1): 21–26. DOI: 10.2307/1403527
- 34CODATA. 2012. CODATA Constitution (Statutes and By-Laws). Paris: CODATA. Available at
http://www.codata.org/uploads/Constitution%202012%20Revised%20Final%20(2).pdf . - 35Conway, D. 2010. The data science Venn diagram. Available at
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram . - 36Conway, D. 2018. DataFramed. #15 Building Data Science Teams. March 25, 2018. Available at
https://podcastaddict.com/episode/49574942 . - 37Cornelius, I. 2002. Theorizing information for information science. Annual Review of Information Science and Technology, 36(1): 392–425. DOI: 10.1002/aris.1440360110
- 38Cox, RJ, Mattern, E, Mattock, L, Rodriguez, R and Sutherland, T. 2012. Assessing iSchools. Journal of Education for Library and Information Science, 53(4): 303–316.
https://www.jstor.org/stable/43686923 . - 39Craig Finlay, S, Ni, C and Sugimoto, C. 2018. Different mysteries, different lore: An examination of inherited referencing behaviors in academic mentoring. Library & Information Science Research, 40(3–4): 277–284. DOI: 10.1016/j.lisr.2018.09.010
- 40Cutcher-Gershenfeld, J, et al. 2017. Five ways consortia can catalyse open science. Nature, 543(7647): 615–617. DOI: 10.1038/543615a
- 41Davenport, TH and Patil, DJ. 2012. Data scientist: The sexiest job of the 21st century. Harvard Business Review, October 2012. Available at
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century . - 42Day, RE. 2000. The “conduit metaphor” and the nature and politics of information studies. Journal of the American Society for Information Science, 51(9): 805–811. DOI: 10.1002/(SICI)1097-4571(2000)51:9<;805::AID-ASI30>3.0.CO;2-C
- 43Day, RE. 2009.
Information explosion . In: Bates, MJ and Niles Maack, M (eds.), Encyclopedia of Library and Information Sciences, 3rd ed. Boca Raton, FL: CRC Press. pp. 2416–2420. DOI: 10.1081/E-ELIS3-120044391 - 44De Solla Price, DJ and Beaver, D. 1966. Collaboration in an invisible college. American Psychologist, 21(11): 1011–1018. DOI: 10.1037/h0024051
- 45De Veaux, RD, et al. 2017. Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application, 4: 15–30. DOI: 10.1146/annurev-statistics-060116-053930
- 46Demchenko, Y, et al. 2016. EDISON Data Science Framework: A foundation for building data science profession for research and industry. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom).
December 12–15, 2016 , Luxembourg. Piscataway, NJ:IEEE . pp. 620–626. DOI: 10.1109/CloudCom.2016.0107 - 47Donoho, D. 2017. 50 Years of data science. Journal of Computational and Graphical Statistics, 26(4): 745–766. DOI: 10.1080/10618600.2017.1384734
- 48EDISON Project. 2017. EDISON Data Science Framework (EDSF). Available at
http://edison-project.eu/edison/edison-data-science-framework-edsf . - 49Farkas-Conn, IS. 1990. From Documentation to Information Science: The Beginnings and Early Development of the American Documentation Institute–American Society for Information Science. New York: Greenwood Press.
- 50Fayyad, U and Hamutcu, H. 2022. From unicorn data scientist to key roles in data science: Standardizing roles. Harvard Data Science Review, 4(3). DOI: 10.1162/99608f92.008b5006
- 51Feder, T. 2016. Data science can be an attractive career for physicists. Physics Today, 69(8): 20–22. DOI: 10.1063/PT.3.3261
- 52Finzer, W. 2013. The data science education dilemma. Technology Innovations in Statistics Education, 7(2): 1–9.
https://escholarship.org/uc/item/7gv0q9dc . DOI: 10.5070/T572013891 - 53Floridi, L. 2005. Is semantic information meaningful data? Philosophy and Phenomenological Research, 70(2): 351–370. DOI: 10.1111/j.1933-1592.2005.tb00531.x
- 54Floridi, L and Taddeo, M. 2016. What is data ethics? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2083): 20160360. DOI: 10.1098/rsta.2016.0360
- 55Fowler, R. 2015.
Visualizing data science . GeoSpace blog. December 22, 2015. American Geophysical Union. Available athttps://blogs.agu.org/geospace/2015/12/22/visualizing-data-science/ . - 56Fox, G, Maini, S, Rosenbaum, H and Wild, D. 2015. Data science and online education. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom).
November 30, 2015–December 3, 2015 , Vancouver, BC, Canada. Piscataway, NJ:IEEE . DOI: 10.1109/CloudCom.2015.82 - 57Fox, P and Hendler, J. 2014. The science of data science. Big Data, 2(2): 68–70. DOI: 10.1089/big.2014.0011
- 58Frické, M. 2019.
The knowledge pyramid: The DIKW hierarchy . Knowledge Organization 49(1): 33–46. Also available in Hjørland, B and Gnoli, C (eds.), ISKO Encyclopedia of Knowledge Organization. Available athttp://www.isko.org/cyclo/dikw . DOI: 10.5771/0943-7444-2019-1-33 - 59Frohmann, B. 2004. Deflating Information: From Science Studies to Documentation. Toronto: University of Toronto Press. DOI: 10.3138/9781442673779
- 60Furner, J. 2004. Information studies without information. Library Trends, 52(3): 427–446.
http://hdl.handle.net/2142/1684 . - 61Furner, J. 2016.
“Data”: The data . In: Kelly, M and Bielby, J, Information Cultures in the Digital Age: A Festschrift in Honor of Rafael Capurro. Dordrecht: Springer. pp. 287–306. DOI: 10.1007/978-3-658-14681-8 - 62Furner, J. 2017. Philosophy of data: Why? Education for Information, 33(1): 55–70. DOI: 10.3233/EFI-170986
- 63Geiger, RS, Cabasse, C, Cullens, CY, Norén, L, Fiore-Gartland, B, Das, D and Brady, H. 2018. Career Paths and Prospects in Academic Data Science: Report of the Moore-Sloan Data Science Environments Survey. Berkeley,, CA: UC-Berkeley Institute for Data Science. DOI: 10.31235/osf.io/xe823
- 64Geoghegan, BD. 2008. Historiographic conceptualization of information: A critical survey. IEEE Annals of the History of Computing, 30(1): 66–81. DOI: 10.1109/MAHC.2008.9
- 65Gil, Y. 2017. Thoughtful artificial intelligence: Forging a new partnership for data science and scientific discovery. Data Science, 1(1–2): 119–129. DOI: 10.3233/DS-170011
- 66Gorichanaz, T. 2017. Applied epistemology and understanding in information studies. Information Research, 22(4): paper 776. Available at
http://InformationR.net/ir/22-4/paper776.html . - 67Gray, J, Gerlitz, C and Bounegru, L. 2018. Data infrastructure literacy. Big Data & Society, 5(2):
205395171878631 . DOI: 10.1177/2053951718786316 - 68Green, B. 2018. Data Science as Political Action: Grounding Data Science in a Politics of Justice. arXiv:1811.03435. Ithaca,, NY: Cornell University.
https://arxiv.org/abs/1811.03435 . - 69Hammarfelt, B. 2019.
Discipline . In: Hjørlan B and Gnoli, C, Encyclopedia of Knowledge Organization. International Society of Knowledge Organization. Available athttps://www.isko.org/cyclo/discipline . - 70Hendler, J, Ding, Y and Mons, B. 2019. A journal for human and machine. Data Intelligence, 1(1): 1–5. DOI: 10.1162/dint_e_00001
- 71Herner, S. 1984. Brief history of information science. Journal of the American Society for Information Science, 35(3): 157–163. DOI: 10.1002/asi.4630350308
- 72Hildreth, CR and Koenig, M. 2002. Organizational realignment of LIS programs in academia: From independent standalone units to incorporated programs. Journal of Education for Library and Information Science, 43(2): 126–133. DOI: 10.2307/40323973
- 73Hjørland, B. 2013.
Information science and its core concepts: Levels of disagreement . In: lbekwe-SanJuan, F and Dousa, T, Theories of Information, Communication and Knowledge. Studies in History and Philosophy of Science, vol. 34. Dordrecht: Springer. pp. 205–235. DOI: 10.1007/978-94-007-6973-1_9 - 74Hjørland, B. 2018.
Data (with big data and database semantics) . Knowledge Organization, 45(8): 685–708. Also available in Hjørland, B and Gnoli, C (eds.), ISKO Encyclopedia of Knowledge Organization. Available athttp://www.isko.org/cyclo/data . DOI: 10.5771/0943-7444-2018-8-685 - 75Huutoniemi, K, Klein, JT, Bruun, H and Hukkinen, J. 2010. Analyzing interdisciplinarity: Typology and indicators. Research Policy, 39(1): 79–88. DOI: 10.1016/j.respol.2009.09.011
- 76Iwata, S. 2008. Editor’s note: Scientific “agenda” of data science. Data Science Journal, 7: 54–56. DOI: 10.2481/dsj.7.54
- 77Jacobs, JA. 2013. In Defense of Disciplines: Interdisciplinarity and Specialization in the Research University. Chicago, IL: University of Chicago Press. DOI: 10.7208/chicago/9780226069463.001.0001
- 78Johnson, NR. 2017. Rhetoric and the Cold War politics of information science. Journal of the Association for Information Science and Technology, 68(6): 1375–1384. DOI: 10.1002/asi.23866
- 79Keegan, B. 2016. Journalism as a professional model for data science. Blog post, February 9, 2016. Available at
https://www.brianckeegan.com/2016/02/journalism-as-a-professional-model-for-data-science/ . - 80Keller, SA, Shipp, SS, Schroeder, AD and Korkmaz, G. 2020. Doing data science: A framework and case study. Harvard Data Science Review, 2(1). DOI: 10.1162/99608f92.2d83f7f5
- 81King, JL. 2006. Identity in the I-School movement. Bulletin of the American Society for Information Science and Technology, 32(4). Available at
http://asis.org/Bulletin/Apr-06/king.html . DOI: 10.1002/bult.2006.1720320406. - 82Klein, JT. 1996. Crossing Boundaries: Knowledge, Disciplinarities, and Interdisciplinarities. Charlottesville: University Press of Virginia.
- 83Kline, R. 2004. What is information theory a theory of? Boundary work among information theorists and information scientists in the United States and Britain during the Cold War. In: Rayward, WB and Bowden, ME, Conference on the History and Heritage of Scientific and Technological Information Systems. Medford, NJ:
Information Today . pp. 15–28. - 84Knorr-Cetina, KD. 1991. Epistemic cultures: Forms of reason in science. History of Political Economy, 23: 105–122. DOI: 10.1215/00182702-23-1-105
- 85Kross, S and Guo, PJ. 2019. Practitioners teaching data science in industry and academia: Expectations, workflows, and challenges. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19).
May 4–9, 2019 , Glasgow, Scotland. New York:ACM . DOI: 10.1145/3290605.3300493 - 86Kross, S, Peng, RD, Caffo, BS, Gooding, I and Leek, JT. 2019. The democratization of data science education. American Statistician, 74(1): 1–7. DOI: 10.1080/00031305.2019.1668849
- 87Larsen, RL. 2008. History of the iSchools. Available at
https://ischoolsinc.wildapricot.org/resources/Documents/Member_Info_Resources/Coorporate%20Documents/History-of-the-iSchools-2009.pdf . - 88Lenoir, T. 1997. Instituting Science: The Cultural Production of Scientific Disciplines. Stanford,, CA: Stanford University Press. DOI: 10.1515/9781503616059
- 89Leonelli, S. 2015. What counts as scientific data? A relational framework. Philosophy of Science, 82(5): 810–821. DOI: 10.1086/684083
- 90Lide, DR and Wood, GH. 2012. CODATA @ 45 Years: The Story of the ICSU Committee on Data for Science and Technology (CODATA) from 1966 to 2010. Paris: CODATA. Available at
http://www.codata.org/publications/codata-history . - 91Ma, X. 2023.
Data science for geoscience: Recent progress and future trends from the perspective of a data life cycle . In: Ma, X, Mookerjee, M, Hsu, L and Hills, D, Recent Advancement in Geoinformatics and Data Science. Boulder, CO: Geological Society of America. DOI: 10.1130/2022.2558(05) - 92Maack, MN. 1997. Toward a new model of the information professions: Embracing empowerment. Journal of Education for Library and Information Science, 38(4): 283–302. DOI: 10.2307/40324190
- 93Madsen, D. 2016. Liberating interdisciplinarity from myth: An exploration of the discursive construction of identities in information studies. Journal of the Association for Information Science and Technology, 67(11): 2697–2709. DOI: 10.1002/asi.23622
- 94Madsen, D. 2017.
Conspicuous by presence: The empty signifier “interdisciplinarity” and the representation of absence . In: Schröter, M and Taylor, C, Exploring Silence and Absence in Discourse. Cham, Switzerland: Springer International Publishing. pp. 359–390. DOI: 10.1007/978-3-319-64580-3_13 - 95Manyika, J, Chui, M, Brown, B, Bughin, J, Dobbs, R, Roxburgh, C and Byers, AH. 2011.
Big data: The next frontier for innovation, competition, and productivity . McKinsey Global Institute, May 1, 2011. Available athttp://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation . - 96Marchionini, G. 2023. Information and data sciences: Context, units of analysis, meaning, and human impact. Data and Information Management, 7(1). DOI: 10.1016/j.dim.2023.100031
- 97Mattmann, CA. 2013. Computing: A vision for data science. Nature, 493: 473–475. DOI: 10.1038/493473a
- 98Mayernik, MS. 2016. Research data and metadata curation as institutional issues. Journal of the Association for Information Science and Technology, 67(4): 973–993. DOI: 10.1002/asi.23425
- 99McQuillan, D. 2018a. Data science as machinic Neoplatonism. Philosophy & Technology, 31: 253–272. DOI: 10.1007/s13347-017-0273-3
- 100McQuillan, D. 2018b. People’s councils for ethical machine learning. Social Media + Society, 4(2). DOI: 10.1177/2056305118768303
- 101Meng, XL. 2019. Data science: An artificial ecosystem. Harvard Data Science Review, 1(1). DOI: 10.1162/99608f92.ba20f892
- 102Mezey, PG, Warburton, P, Jako, E and Szekeres, Z. 2001. Dimension concepts and reduced dimensions in toxicological QShAR databases as tools for data quality assessment. Journal of Mathematical Chemistry, 30(4): 375–387. DOI: 10.1023/A:1015138426162
- 103Miller, S and Hughes, D. 2017. The Quant Crunch: How the Demand for Data Science Skills is Disrupting the Job Market. Boston: Burning Glass Technologies.
http://www.bhef.com/sites/default/files/bhef_2017_quant_crunch.pdf . - 104Monroe-White, T. 2022. Emancipating data science for Black and Indigenous students via liberatory datasets and curricula. IASSIST Quarterly, 46(4): 1–8. DOI: 10.29173/iq1007
- 105Moore-Sloan Data Science Environments. 2018. Creating Institutional Change in Data Science. Available at
http://msdse.org/files/Creating_Institutional_Change.pdf . - 106NASEM. 2017. Envisioning the Data Science Discipline: The Undergraduate Perspective: Interim Report. Washington, DC: National Academies Press. DOI: 10.17226/24886
- 107NASEM. 2018. Data Science for Undergraduates: Opportunities and Options. Washington, DC: National Academies Press. DOI: 10.17226/25104
- 108Ortiz-Repiso, V, Greenberg, J and Calzada-Prado, J. 2018. A cross-institutional analysis of data-related curricula in information science programmes: A focused look at the iSchools. Journal of Information Science, 44(6): 768–784. DOI: 10.1177/0165551517748149
- 109Ostler, LJ, Dahlin, TC and Willardson, JD. 1995. The Closing of American Library Schools: Problems and Opportunities. Westport, CT: Greenwood Press.
- 110Phillips, CJ. 2019. The bases of data. Harvard Data Science Review, 1(2). DOI: 10.1162/99608f92.5c483119
- 111Pierre, J. 2019.
Building a digital family: Examining social media and social support in the development of youth “at-risk.” Unpublished thesis (PhD), University of California, Los Angeles, CA. Available athttps://escholarship.org/uc/item/6c70b07v . - 112Poirier, L. 2021. Reading datasets: Strategies for interpreting the politics of data signification. Big Data & Society, 8(2). DOI: 10.1177/20539517211029322
- 113Pournaras, E. 2017. Cross-disciplinary higher education of data science—beyond the computer science student. Data Science, 1(1/2): 1–17. DOI: 10.3233/DS-170005
- 114Press, G. 2013. A very short history of data science. Forbes, May 28, 2013. Available at
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/ . - 115Rayward, WB. 1996. The history and historiography of information science: Some reflections. Information Processing & Management, 32(1): 3–17. DOI: 10.1016/0306-4573(95)00046-J
- 116Ribes, D. 2018. STS, meet data science, once again. Science, Technology, & Human Values, 44(3): 514–539. DOI: 10.1177/0162243918798899
- 117Richards, PS. 1994. Scientific Information in Wartime: The Allied-German Rivalry, 1939–1945. Westport, CT: Greenwood Press.
- 118Rosenberg, D. 2013.
Data before the fact . In: Gitelman, L, “Raw Data” Is an Oxymoron. Cambridge, MA: MIT Press. pp. 15–40. - 119Rumble, J. 2023. Thoughts on Starting the CODATA Data Science Journal. Data Science Journal, 22:
13 , 1–4. DOI: 10.5334/dsj-2023-013 - 120Saltz, J, Shamshurin, I and Connors, C. 2017. Predicting data science sociotechnical execution challenges by categorizing data science projects. Journal of the Association for Information Science and Technology, 68(12): 2720–2728. DOI: 10.1002/asi.23873
- 121Saracevic, T. 1997. Users lost: Reflections on the past, future, and limits of information science. ACM SIGIR Forum, 31(2): 16–27. DOI: 10.1145/270886.270889
- 122Scheider, S, Nyamsuren, E, Kruiger, H and Xu, H. 2020. Why geographic data science is not a science. Geography Compass, 14(11): 1–15. DOI: 10.1111/gec3.12537
- 123Shannon, CE and Weaver, W. 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press.
- 124Shaw, R. 2019. The missing profession: Towards an institution of critical technical practice. Information Research, 24(4): paper colis1904.
http://InformationR.net/ir/24-4/colis/colis1904.html . - 125Shera, JH. 1970. Sociological Foundations of Librarianship. Bombay, India: Asia Publishing House.
- 126Smith, FJ. 2006. Data science as an academic discipline. Data Science Journal, 5: 163–164. DOI: 10.2481/dsj.5.163
- 127Smith, FJ. 2023. The Launch of the Data Science Journal in 2002. Data Science Journal, 22:
11 , 1–5. DOI: 10.5334/dsj-2023-11 - 128Soergel, D. 1999. The rise of ontologies or the reinvention of classification. Journal of the American Society for Information Science, 50(12): 1119–1120. DOI: 10.1002/(SICI)1097-4571(1999)50:12<;1119::AID-ASI12>3.0.CO;2-I
- 129Spang-Hanssen, H. 1970/2001. How to teach about information as related to documentation? HumanIT, 5(1).
https://humanit.hb.se/article/view/168 . - 130Srinivasan, R. 2017. Whose Global Village? Rethinking How Technology Shapes Our World. New York: New York University Press.
- 131Stanton, J, Palmer, CL, Blake, C and Allard, S. 2012.
Interdisciplinary data science education . In: Xiao, N and McEwen, LR, Special Issues in Data Management. ACS Symposium Series 1110. Washington, DC: American Chemical Society. pp. 97–113. DOI: 10.1021/bk-2012-1110.ch006 - 132Statistics Views. 2013. Nate Silver: What I need from statisticians. Statistics Views, August 23, 2013. Available at
https://www.statisticsviews.com/article/nate-silver-what-i-need-from-statisticians/ . - 133Stodden, V. 2020. The data science life cycle. Communications of the ACM, 63(7): 58–66. DOI: 10.1145/3360646
- 134Stoyanovich, J and Lewis, A. 2019. Teaching Responsible Data Science: Charting New Pedagogical Territory. arXiv: 1912.10564. DOI: 10.1145/3360646
- 135Szostak, R. 2013. The state of the field: Interdisciplinary research. Issues in Interdisciplinary Studies, 31: 44–65.
http://hdl.handle.net/10323/4479 . - 136Tang, R and Sae-Lim, W. 2016. Data science programs in U.S. higher education: An exploratory content analysis of program description, curriculum structure, and course focus. Education for Information, 32(3): 269–290. DOI: 10.3233/EFI-160977
- 137Van House, N and Sutton, SA. 1996. The panda syndrome: An ecology of LIS education. Journal of Education for Library and Information Science, 37(2): 131–147. DOI: 10.2307/40324268
- 138Wenger, E. 1998. Communities of Practice: Learning, Meaning, and Identity. Cambridge, UK: Cambridge University Press. DOI: 10.1017/CBO9780511803932
- 139White, HD and McCain, KW. 1998. Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4): 327–355. DOI: 10.1002/(SICI)1097-4571(19980401)49:4<;327::AID-ASI4>3.0.CO;2-4
- 140Wiggins, A and Sawyer, S. 2012. Intellectual diversity and the faculty composition of iSchools. Journal of the American Society for Information Science and Technology, 63(1): 8–21. DOI: 10.1002/asi.21619
- 141Wilkerson, MH and Polman, JL. 2019. Situating data science: Exploring how relationships to data shape learning. Journal of the Learning Sciences, 29(1): 1–10. DOI: 10.1080/10508406.2019.1705664
- 142Willems, K. 2017.
The periodic table of data science . DataCamp Official Blog, April 12, 2017.https://web.archive.org/web/20220116104729/https://www.datacamp.com/community/blog/data-science-periodic-table . - 143Wing, JM and Banks, D. 2019. Highlights of the inaugural data science leadership summit. Harvard Data Science Review, 1(2). DOI: 10.1162/99608f92.e45fcb79
- 144Wing, JM, Janeja, VP, Kloefkorn, T and Erickson, LC. 2018. Data Science Leadership Summit: Summary Report. New York: Columbia University. DOI: 10.13140/RG.2.2.13710.61764
- 145Zhang, Y, et al. Forthcoming. Data science curriculum in the iField. Journal of the Association for Information Science and Technology. DOI: 10.1002/asi.24701
