Have a personal or library account? Click to login
How and Why Do Researchers Reference Data? A Study of Rhetorical Features and Functions of Data References in Academic Articles Cover

How and Why Do Researchers Reference Data? A Study of Rhetorical Features and Functions of Data References in Academic Articles

Open Access
|Apr 2023

References

  1. Abu-Jbara, A, Ezra, J and Radev, D. 2013. Purpose and polarity of citation: Towards NLP-based bibliometrics. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, June 2013, 596606. Association for Computational Linguistics. Available at: https://aclanthology.org/N13-1067.
  2. Altman, M, Borgman, C, Crosas, M and Matone, M. 2015. An introduction to the joint principles for data citation. Bulletin of the American Society for Information Science/ASIS, 41(3): 4345. Wiley Online Library. DOI: 10.1002/bult.2015.1720410313
  3. Ball, A and Duke, M. 2015. How to cite datasets and link to publications. DOI: 10.1007/1-4020-5340-1
  4. Banaeefar, H, Burchart, S, Moss, E, et al. 2022. Best practice may not be enough: Variation in data citation using DOIs. Poster presented at the annual meeting of the International Association for Social Science Information Service and Technology, June 9, 2022. DOI: 10.7302/4809
  5. Bauer, MW. 2000. Classical content analysis: A review. In: Qualitative Researching with Text, Image and Sound: A Practical Handbook. Sage, 131151. DOI: 10.4135/9781849209731
  6. Belter, CW. 2014. Measuring the value of research data: a citation analysis of oceanographic data sets. PloS one, 9(3): e92590. DOI: 10.1371/journal.pone.0092590
  7. Blake, C. 2010. Beyond genes, proteins, and abstracts: Identifying scientific claims from full-text biomedical articles. Journal of biomedical informatics, 43(2): 173189. DOI: 10.1016/j.jbi.2009.11.001
  8. Boland, K, Ritze, D, Eckert, K, et al. 2012. Identifying references to datasets in publications. In: Theory and Practice of Digital Libraries, 2012: 150161. Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-33290-6_17
  9. Buneman, P, Dosso, D, Lissandrini, M, et al. 2022. Data citation and the citation graph. Quantitative Science Studies, 2(4): 13991422. MIT Press – Journals. DOI: 10.1162/qss_a_00166
  10. Case, DO and Higgins, GM. 2000. How can we investigate citation behavior? A study of reasons for citing literature in communication. Journal of the American Society for Information Science. Wiley Online Library. DOI: 10.1002/(SICI)1097-4571(2000)51:7<;635::AID-ASI6>3.0.CO;2-H
  11. Charmaz, K. 2006. Constructing grounded theory: A practical guide through qualitative analysis. SAGE.
  12. Chernin, E. 1988. The ‘Harvard system’: a mystery dispelled. BMJ: British Medical Journal, 297(6655). BMJ Publishing Group: 1062. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1834803/ (accessed 15 February 2023). DOI: 10.1136/bmj.297.6655.1062
  13. Cohan, A, Ammar, W, van Zuylen, M, et al. 2019. Structural scaffolds for citation intent classification in scientific publications. In: Proceedings of the 2019 Conference of the North, Stroudsburg, PA, USA, 2019. Association for Computational Linguistics. DOI: 10.18653/v1/N19-1361
  14. Coombs, CH. 1964. A theory of data. Oxford, England: Wiley A theory of data. Available at: https://psycnet.apa.org/fulltext/1965-00053-000.pdf.
  15. Cousijn, H, Feeney, P, Lowenberg, D, et al. 2019. Bringing citations and usage metrics together to make data count. Data science journal, 18. Ubiquity Press, Ltd. DOI: 10.5334/dsj-2019-009
  16. Cragin, MH, Palmer, CL, Carlson, JR, et al. 2010. Data sharing, small science and institutional repositories. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1926): 40234038. The Royal Society Publishing. DOI: 10.1098/rsta.2010.0165
  17. Cronin, B. 1981. The need for a theory of citing. The Journal of documentation; devoted to the recording, organization and dissemination of specialized knowledge, 37(1): 1624. Emerald. DOI: 10.1108/eb026703
  18. Cronin, B. 1984. The citation process: The role and significance of citations in scientific communication. Taylor Graham.
  19. Ding, Y, Zhang, G, Chambers, T, et al. 2014. Content-based citation analysis: The next generation of citation analysis. Journal of the Association for Information Science and Technology, 65(9): 18201833. Wiley. DOI: 10.1002/asi.23256
  20. Edge, D. 1979. Quantitative measures of communication in science: a critical review. History of science; an annual review of literature, research and teaching, 17(36 Pt 2): 102134. DOI: 10.1177/007327537901700202
  21. Egghe, L. 2010. The Hirsch index and related impact measures. Annu. Rev. Inf. Sci. Technol., 44(1): 65114. DOI: 10.1002/aris.2010.1440440109
  22. Fear, KM. 2013. Measuring and anticipating the impact of data reuse. Available at: https://deepblue.lib.umich.edu/handle/2027.42/102481.
  23. Fenner, M, Crosas, M, Grethe, JS, et al. 2019. A data citation roadmap for scholarly data repositories. Scientific data, 6(1): 28. DOI: 10.1038/s41597-019-0031-8
  24. Frumkin, H, Das, MB, Negev, M, et al. 2020. Protecting health in dry cities: considerations for policy makers. BMJ, 371: m2936. DOI: 10.1136/bmj.m2936
  25. Furner, J. 2016. ‘Data’: The data. In: Kelly, M and Bielby, J, Information Cultures in the Digital Age: A Festschrift in Honor of Rafael Capurro. Wiesbaden: Springer Fachmedien Wiesbaden, 287306. DOI: 10.1007/978-3-658-14681-8_17
  26. Garfield, E. 1964. ‘Science Citation Index’—A New Dimension in Indexing. Science, 144(3619): 649654. American Association for the Advancement of Science (AAAS). DOI: 10.1126/science.144.3619.649
  27. Garfield, E. 1979. Is citation analysis a legitimate evaluation tool? Scientometrics, 1(4): 359375. Springer Science and Business Media LLC. DOI: 10.1007/BF02019306
  28. Garvey, WD and Griffith, BC. 1972. Communication and information processing within scientific disciplines: Empirical findings for Psychology. Information Storage and Retrieval, 8(3): 123136. DOI: 10.1016/0020-0271(72)90041-1
  29. Gilbert, GN and Woolgar, S. 1974. Essay review: The quantitative study of science: An examination of the literature. Science studies, 4(3): 279294. SAGE Publications. DOI: 10.1177/030631277400400305
  30. Gregory, K, Groth, P, Scharnhorst, A, et al. 2020. Lost or found? Discovering data needed for research. Harvard Data Science Review. DOI: 10.1162/99608f92.e38165eb
  31. Haines, M, Fishback, P and Rhode, PW. 2015. United States Agriculture Data, 1840–2010. Dataset ICPSR35206-v2, Inter-university Consortium for Political and Social Research. Ann Arbor, MI.
  32. Hernández-Alvarez, M and Gomez, JM. 2016. Survey about citation context analysis: Tasks, techniques, and resources. Natural Language Engineering, 22(3): 327349. DOI: 10.1017/S1351324915000388
  33. Hey, T, Tansley, S and Tolle, K. 2009. The fourth paradigm: Data-intensive scientific discovery. Redmond, Washington: Microsoft Research.
  34. Holsti, OR. 1969. Content analysis for the social sciences and humanities. Reading. MA: Addison-Wesley.
  35. Hook, DW, Porter, SJ and Herzog, C. 2018. Dimensions: Building context for search and evaluation. Frontiers in Research Metrics and Analytics, 3. DOI: 10.3389/frma.2018.00023
  36. Jiao, C and Darch, PT. 2020. The role of the data paper in scholarly communication. Proceedings of the Association for Information Science and Technology, 57(1). Wiley. DOI: 10.1002/pra2.316
  37. Jurgens, D, Kumar, S, Hoover, R, et al. 2018. Measuring the evolution of a scientific field through citation frames. Transactions of the Association for Computational Linguistics, 6. MIT Press: 391406. DOI: 10.1162/tacl_a_00028
  38. Kozlowski, D, Larivière, V, Sugimoto, CR, et al. 2022. Intersectional inequalities in science. Proceedings of the National Academy of Sciences of the United States of America, 119(2). DOI: 10.1073/pnas.2113067119
  39. Kwon, D. 2022. The rise of citational justice: how scholars are making references fairer. Nature, 603(7902): 568571. DOI: 10.1038/d41586-022-00793-1
  40. Lewis, GJ and Bates, TC. 2017. The temporal stability of in-group favoritism Is mostly attributable to genetic factors. Social Psychological and Personality Science, 8(8): 897903. DOI: 10.1177/1948550617699250
  41. Leydesdorff, L. 1998. Theories of citation? Scientometrics, 43(1): 525. Springer Science and Business Media LLC. DOI: 10.1007/BF02458391
  42. Li, K and Jiao, C. 2022. The data paper as a sociolinguistic epistemic object: A content analysis on the rhetorical moves used in data paper abstracts. Journal of the Association for Information Science and Technology, 73(6): 834846. Wiley. DOI: 10.1002/asi.24585
  43. Liu, M. 1993. Progress in documentation the complexities of citation practice: a review of citation studies. Journal of Documentation, 49(4): 370408. MCB UP Ltd. DOI: 10.1108/eb026920
  44. Lyu, D, Ruan, X, Xie, J, et al. (2021) The classification of citing motivations: a meta-synthesis. Scientometrics, 126(4): 32433264. DOI: 10.1007/s11192-021-03908-z
  45. Mayernik, MS, Hart, DL, Maull, KE, et al. 2017. Assessing and tracing the outcomes and impact of research infrastructures. Journal of the Association for Information Science and Technology, 68(6): 13411359. Wiley. DOI: 10.1002/asi.23721
  46. Mayo, C, Vision, TJ and Hull, EA. 2016. The location of the citation: changing practices in how publications cite original data in the Dryad Digital Repository, 11(1): 150155. DOI: 10.2218/ijdc.v11i1.400
  47. McIntyre, F and Simkovic, M. 2018. Are law degrees as valuable to minorities? International Review of Law and Economics, 53: 2337. DOI: 10.1016/j.irle.2017.09.004
  48. Merton, RK. 1968. The Matthew effect in science. The reward and communication systems of science are considered. Science, 159(3810): 5663. Available at: https://www.ncbi.nlm.nih.gov/pubmed/5634379. DOI: 10.1126/science.159.3810.56
  49. Meyers, K. 2019. In the shadow of the mushroom cloud: Nuclear testing, radioactive fallout, and damage to U.S. agriculture, 1945 to 1970. The journal of economic history, 79(1): 244274. Cambridge University Press. DOI: 10.1017/S002205071800075X
  50. Mooney, H and Newton, MP. 2012. The anatomy of a data citation: Discovery, reuse, and credit. Journal of librarianship and information science. DOI: 10.7710/2162-3309.1035
  51. Moss, E and Lyle, J. 2018. Opaque data citation: Actual citation practice and its implication for tracking data use. Available at: https://deepblue.lib.umich.edu/handle/2027.42/142393.
  52. Nakov, PI, Schwartz, AS, Hearst, M, et al. 2004. Citances: Citation sentences for semantic analysis of bioscience text. In: Proceedings of the SIGIR, 2004: 8188. Citeseer. DOI: 10.1525/rep.2004.88.1.81
  53. Park, H, You, S and Wolfram, D. 2018. Informal data citation for data sharing and reuse is more common than formal data citation in biomedical fields. Journal of the Association for Information Science and Technology, 69(11): 13461354. Wiley. DOI: 10.1002/asi.24049
  54. Pasquetto, IV, Borgman, CL and Wofford, MF. 2019. Uses and reuses of scientific data: The data creators’ advantage. 1.2 1(2). MIT Press – Journals. DOI: 10.1162/99608f92.fc14bf2d
  55. Renear, AH, Sacchi, S and Wickett, KM. 2010. Definitions of dataset in the scientific and technical literature. Proceedings of the American Society for Information Science and Technology, 47(1): 14. Wiley. DOI: 10.1002/meet.14504701240
  56. Settels, J. 2021. Compound disadvantage between economic declines at the city and neighborhood levels for older Americans’ depressive symptoms. City & community, 20(3): 260288. SAGE Publications. DOI: 10.1177/1535684120980992
  57. Shotton, D. 2010. CiTO, the Citation Typing Ontology. Journal of biomedical semantics, 1(Suppl 1): S6. DOI: 10.1186/2041-1480-1-S1-S6
  58. Silvello, G. 2018. Theory and practice of data citation. Journal of the Association for Information Science. Wiley Online Library. DOI: 10.1002/asi.23917
  59. Small, HG. 1978. Cited documents as concept symbols. Social studies of science, 8(3): 327340. SAGE Publications Ltd. DOI: 10.1177/030631277800800305
  60. Smith, B. 2014. Document acts. Institutions, Emotions, and Group Agents, 1931. DOI: 10.1007/978-94-007-6934-2_2
  61. Sollaci, LB and Pereira, MG. 2004. The introduction, methods, results, and discussion (IMRAD) structure: a fifty-year survey. Journal of the Medical Library Association: JMLA, 92(3): 364367. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15243643.
  62. Spiegel-Rosing, I. 1977. Science studies: Bibliometric and content analysis. Social studies of science, 7(1): 97113. SAGE Publications Ltd. DOI: 10.1177/030631277700700111
  63. Styck, KM, Beaujean, AA and Watkins, MW. 2019. Profile reliability of cognitive ability subscores in a referred sample. Archives of Scientific Psychology, 7(1): 119128. DOI: 10.1037/arc0000064
  64. Teplitskiy, M, Duede, E, Menietti, M, et al. 2022. How status of research papers affects the way they are read and cited. Research policy, 51(4): 104484. DOI: 10.1016/j.respol.2022.104484
  65. Teufel, S, Siddharthan, A and Tidhar, D. 2006. Automatic classification of citation function. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, Sydney, Australia, July 2006, 103110. Association for Computational Linguistics. Available at: https://aclanthology.org/W06-1613. DOI: 10.3115/1610075.1610091
  66. White, MD and Wang, P. 1997. A qualitative study of citing behavior: Contributions, criteria, and metalevel documentation concerns. The Library quarterly, The University of Chicago Press. 67(2): 122154. DOI: 10.1086/629929
  67. Wickett, KM, Sacchi, S, Dubin, D, et al. 2012. Identifying content and levels of representation in scientific data. Proceedings of the American Society for Information Science and Technology, 49(1): 110. Wiley. DOI: 10.1002/meet.14504901199
  68. Wynholds, L 2011. Linking to scientific data: Identity problems of unruly and poorly bounded digital objects. International journal of digital curation, 6(1): 214225. Edinburgh University Library. DOI: 10.2218/ijdc.v6i1.183
  69. Zhao, M, Yan, E and Li, K. 2018. Data set mentions and citations: A content analysis of full-text publications. Journal of the Association for Information Science and Technology, 69(1): 3246. Wiley. DOI: 10.1002/asi.23919
Language: English
Submitted on: Feb 16, 2023
|
Accepted on: Apr 3, 2023
|
Published on: Apr 28, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Sara Lafia, Andrea Thomer, Elizabeth Moss, David Bleckley, Libby Hemphill, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.