Have a personal or library account? Click to login
Improving NASA’s Earth Satellite and Model Data Discoverability for Interdisciplinary Research, Applications, and Education Cover

Improving NASA’s Earth Satellite and Model Data Discoverability for Interdisciplinary Research, Applications, and Education

Open Access
|Apr 2023

References

  1. 1Acker, JG and Leptoukh, G. 2007. Online analysis enhances use of NASA earth science data. Eos, Transactions American Geophysical Union, 88(2): 1417. DOI: 10.1029/2007EO020003
  2. 2ACSI. 2022. American Customer Satisfaction Index (ACSI). Available at: https://www.theacsi.org/ [Last accessed 1 September 2022].
  3. 3Augustin, H, Sudmanns, M, Tiede, D, Lang, S and Baraldi, A. 2019. Semantic Earth Observation Data Cubes. Data, 4(3): 102. DOI: 10.3390/data4030102
  4. 4Behnke, J, Mitchell, A and Ramapriyan, H. 2019. NASA’s Earth Observing Data and Information System—Near-term challenges. Data Science Journal, 18(1): 40. DOI: 10.5334/dsj-2019-040
  5. 5Bosilovich, MG, Lucchesi, R and Suarez, M. 2016. MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1). Greenbelt, MD: Global Modeling and Assimilation Office. Available at: http://gmao.gsfc.nasa.gov/pubs/office_notes [Last accessed 1 September 2022].
  6. 6Bugbee, K, le Roux, J, Sisco, A, Kaulfus, A, Staton, P, Woods, C, Dixon, V, Lynnes, C and Ramachandran, R. 2021. Improving discovery and use of NASA’s earth observation data through metadata quality assessments. Data Science Journal, 20(1): 17. DOI: 10.5334/dsj-2021-017
  7. 7Contaxis, N, Clark, J, Dellureficio, A, Gonzales, S, Mannheimer, S, Oxley, PR, et al. 2022. Ten simple rules for improving research data discovery. PLoS Computational Biology, 18(2): e1009768. DOI: 10.1371/journal.pcbi.1009768
  8. 8Devopedia. 2022. Semantic Web. Version 8, February 15. Available at: https://devopedia.org/semantic-web [Last accessed 1 September 2022].
  9. 9ESIP. 2022a. Discovery Cluster. ESIP. Available at: https://wiki.esipfed.org/Discovery_Cluster [Last accessed 1 September 2022].
  10. 10ESIP. 2022b. The Earth Science Information Partners (ESIP). Available at: https://www.esipfed.org/ [Last accessed 1 September 2022].
  11. 11Fox, P, VSTO Team and SeSF Team. 2015. Semantic search in solar-terrestrial sciences. In: Narock, T and Fox, P (eds.), The Semantic Web in Earth and Space Science: Current Status and Future Directions. Studies on the Semantic Web, Vol. 20. Amsterdam: IOS Press. pp. 127146 DOI: 10.3233/978-1-61499-501-2-127
  12. 12Huffer, B, Cotnoir, M and Gleason, J. 2015. Ontology-drive data access at the NASA earth exchange. In: Ho, H, Chin Ooi, B, Zaki, MJ, et al., Proceedings: 2015 IEEE International Conference on Big Data (Big Data), October 29–November 1, 2015, Santa Clara, CA. n.p.: Piscataway, NJ: IEEE. pp. 21772181. DOI: 10.1109/BigData.2015.7364004
  13. 13Huffman, GJ. 2022. Introduction to global precipitation algorithms and data sets. International Precipitation Working Group. Available at: http://ipwg.isac.cnr.it/data.html [Last accessed 1 September 2022].
  14. 14IPWG. 2022. International Precipitation Working Group. Available at: http://ipwg.isac.cnr.it/ [Last accessed 1 September 2022].
  15. 15Lafia, S, Jablonski, J, Kuhn, W, Cooley, S and Medrano, FA. 2016. Spatial discovery and the research library. Transactions in GIS, 20(3): 399412. DOI: 10.1111/tgis.12235
  16. 16Li, W, Goodchild, MF and Raskin, R. 2014. Towards geospatial semantic search: Exploiting latent semantic relations in geospatial data. International Journal of Digital Earth, 7(1): 1737. DOI: 10.1080/17538947.2012.674561
  17. 17Liu, Z and Acker, J. 2017. Giovanni: The bridge between data and science. Eos, 98. DOI: 10.1029/2017EO079299
  18. 18Liu, Z, Shie, C-L, Ritrivi, AJ, Lei, G-D, Alcott, GT, Greene, M, Acker, J, Wei, JC, Meyer, DJ, Li, A and Al-Jazrawi, AF. 2022. Developing metrics for NASA earth science interdisciplinary data products and services. Data Science Journal, 21(1): 5. DOI: 10.5334/dsj-2022-005
  19. 19Mathiak, B, Juty, N, Bardi, A, Colomb, J and Kraker, P. 2023. What are researchers’ needs in data discovery? Analysis and ranking of a large-scale collection of crowdsourced use cases. Data Science Journal, 22(1): 3. DOI: 10.5334/dsj-2023-003
  20. 20McGibbney, LJ, Armstrong, EM, et al. 2019. Search relevance recommendations for earth science. Technical note ESDS-RFC-037. Available at: https://www.earthdata.nasa.gov/s3fs-public/imported/ESDS-RFC-037v1.0.pdf [Last accessed 1 September 2022].
  21. 21Molod, A, Takacs, L, Suarez, M and Bacmeister, J. 2014. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geoscientific Model Development Discussions, 7(6): 75757617. DOI: 10.5194/gmdd-7-7575-2014
  22. 22Molod, A, Takacs, L, Suarez, M, Bacmeister, J, Song, I-S and Eichmann, A. 2012. The GEOS5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM–2012-104606, Vol. 28.
  23. 23Narock, T and Fox, P. (eds.) 2015. The Semantic Web in Earth and Space Science: Current Status and Future Directions. Studies on the Semantic Web, Vol. 20. Amsterdam: IOS Press. DOI: 10.3233/978-1-61499-501-2-127
  24. 24NASA DAACs. 2022. EOSDIS Distributed Active Archive Centers (DAAC). Available at: https://earthdata.nasa.gov/eosdis/daacs [Last accessed 1 September 2022].
  25. 25NASA Earthdata. 2022a. Earthdata—Open access for open science. Available at: https://www.earthdata.nasa.gov/ [Last accessed 1 September 2022].
  26. 26NASA Earthdata. 2022b. Data Pathfinders. Available at: https://www.earthdata.nasa.gov/learn/pathfinders [Last accessed 1 September 2022].
  27. 27NASA Earthdata. 2022c. Earthdata Cloud evolution. Available at: https://www.earthdata.nasa.gov/eosdis/cloud-evolution#:~:text=Further%20many%20of%20NASA’s%20EOSDIS,more%20data%20being%20added%20weekly [Last accessed 1 September 2022].
  28. 28NASA Earthdata. 2022d. Common Metadata Repository (CMR). Available at: https://www.earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/cmr [Last accessed 1 September 2022].
  29. 29NASA Earthdata. 2022e. Unified Metadata Model (UMM). Available at: https://www.earthdata.nasa.gov/unified-metadata-model-umm#:~:text=NASA’s%20UMM%20is%20an%20extensible,EOSDIS%20CMR%2Dsupported%20metadata%20standards [Last accessed 1 September 2022].
  30. 30NASA Earthdata. 2022f. EOSDIS data in the cloud: User requirements. Available at: https://www.earthdata.nasa.gov/learn/articles/eosdis-data-cloud-user-requirements [Last accessed 1 September 2022].
  31. 31NASA Earthdata. 2022g. Data Product Development Guide for Data Producers. Available at: https://www.earthdata.nasa.gov/esdis/esco/standards-and-references/data-product-development-guide-for-data-producers [Last accessed 1 September 2022].
  32. 32NASA EOSDIS. 2022a. Earth Observing System Data and Information System (EOSDIS). Available at: https://earthdata.nasa.gov/eosdis [Last accessed 1 September 2022].
  33. 33NASA EOSDIS. 2022b. American Customer Satisfaction Index (ACSI) reports. Available at: https://earthdata.nasa.gov/eosdis/system-performance/acsi-reports [Last accessed 1 September 2022].
  34. 34NASA GES DISC. 2022a. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Available at: https://disc.gsfc.nasa.gov [Last accessed 1 September 2022].
  35. 35NASA GES DISC. 2022b. Migrating to the cloud. Available at: https://disc.gsfc.nasa.gov/information/documents?title=Migrating%20to%20the%20Cloud [Last accessed 1 September 2022].
  36. 36NASA GES DISC. 2022c. How to obtain data for conducting hurricane case study. Available at: https://disc.gsfc.nasa.gov/information/howto?keywords=hurricane&title=How%20to%20Obtain%20Data%20for%20Conducting%20Hurricane%20Case%20Study [Last accessed 1 September 2022].
  37. 37NASA Giovanni. 2022. NASA Giovanni. Available at: https://giovanni.gsfc.nasa.gov [Last accessed 1 September 2022].
  38. 38Parsons, MA, Katz, DS, Langseth, M, Ramapriyan, H and Ramdeen, S. 2022. Credit where credit is due. Eos, 103. DOI: 10.1029/2022EO220239
  39. 39Ramapriyan, H and Behnke, J. 2020. NASA’s Earth Observing System Data and Information System (EOSDIS) and FAIR—A self-assessment. In: IN044—Improving Infrastructure for Trustworthy Digital Repositories to Enable Current and Future Use of Open Data in Developed and Developing Countries I. AGU Fall Meeting, December 1–17, 2020.
  40. 40Raskin, RG and Pan, MJ. 2005. Knowledge representation in the semantic web for earth and environmental terminology (SWEET). Computers & Geosciences, 31(9): 11191125. DOI: 10.1016/j.cageo.2004.12.004
  41. 41RDA. 2022a. The RDA Data Discovery Paradigms Interest Group. Available at: https://www.rd-alliance.org/groups/data-discovery-paradigms-ig [Last accessed 1 September 2022].
  42. 42RDA. 2022b. The Research Data Alliance (RDA). Available at: https://www.rd-alliance.org/about-rda [Last accessed 1 September 2022].
  43. 43Stoyanova, K, Gerasimov, I, Mehrabian, A, Jahoda, E, Wei, J, Pham, L and Khayat, MG. 2021. Application of a dataset-publication knowledge graph for improving earth science data search. In: IN45E—Best Practices and Realities of Research Data Repositories III Poster. AGU Fall Meeting, New Orleans, LA, December 13–17, 2021.
  44. 44Wang, C, Ma, X and Chen, J. 2018. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information. Computers & Geosciences, 115: 1219. DOI: 10.1016/j.cageo.2018.03.004
  45. 45Wang, S, Wang, J, Zhan, Q, Zhang, L, Yao, X and Li, G. 2023. A unified representation method for interdisciplinary spatial earth data. Big Earth Data 7(1): 136155. DOI: 10.1080/20964471.2022.2091310
  46. 46Weikum, G. 2013. Data discovery. Data Science Journal, 12: pp. GRDI26GRDI31. DOI: 10.2481/dsj.GRDI-005
  47. 47Wikipedia. 2022. Air France Flight 447. Available at: https://en.wikipedia.org/wiki/Air_France_Flight_447 [Last accessed 1 September 2022].
  48. 48Wilkinson, M, Dumontier, M, Aalbersberg, I, et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
  49. 49Wu, M, Psomopoulos, F, Khalsa, SJ and de Waard, A. 2019. Data discovery paradigms: User requirements and recommendations for data repositories. Data Science Journal, 18(1): 3. DOI: 10.5334/dsj-2019-003
  50. 50Wu, W-S, Purser, RJ and Parrish, DF. 2002. Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130: 29052916. DOI: 10.1175/1520-0493(2002)130<;2905:TDVAWS>2.0.CO;2
Language: English
Submitted on: Nov 17, 2022
Accepted on: Feb 28, 2023
Published on: Apr 28, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Zhong Liu, Chung-Lin Shie, Suhung Shen, James Acker, Angela Li, Jennifer C. Wei, David J. Meyer, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.