References
- 1Acker, JG and Leptoukh, G. 2007. Online analysis enhances use of NASA earth science data. Eos, Transactions American Geophysical Union, 88(2): 14–17. DOI: 10.1029/2007EO020003
- 2ACSI. 2022. American Customer Satisfaction Index (ACSI). Available at:
https://www.theacsi.org/ [Last accessed 1 September 2022]. - 3Augustin, H, Sudmanns, M, Tiede, D, Lang, S and Baraldi, A. 2019. Semantic Earth Observation Data Cubes. Data, 4(3): 102. DOI: 10.3390/data4030102
- 4Behnke, J, Mitchell, A and Ramapriyan, H. 2019. NASA’s Earth Observing Data and Information System—Near-term challenges. Data Science Journal, 18(1): 40. DOI: 10.5334/dsj-2019-040
- 5Bosilovich, MG, Lucchesi, R and Suarez, M. 2016. MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1). Greenbelt, MD: Global Modeling and Assimilation Office. Available at:
http://gmao.gsfc.nasa.gov/pubs/office_notes [Last accessed 1 September 2022]. - 6Bugbee, K, le Roux, J, Sisco, A, Kaulfus, A, Staton, P, Woods, C, Dixon, V, Lynnes, C and Ramachandran, R. 2021. Improving discovery and use of NASA’s earth observation data through metadata quality assessments. Data Science Journal, 20(1): 17. DOI: 10.5334/dsj-2021-017
- 7Contaxis, N, Clark, J, Dellureficio, A, Gonzales, S, Mannheimer, S, Oxley, PR, et al. 2022. Ten simple rules for improving research data discovery. PLoS Computational Biology, 18(2):
e1009768 . DOI: 10.1371/journal.pcbi.1009768 - 8Devopedia. 2022. Semantic Web. Version 8, February 15. Available at:
https://devopedia.org/semantic-web [Last accessed 1 September 2022]. - 9ESIP. 2022a.
Discovery Cluster . ESIP. Available at:https://wiki.esipfed.org/Discovery_Cluster [Last accessed 1 September 2022]. - 10ESIP. 2022b. The Earth Science Information Partners (ESIP). Available at:
https://www.esipfed.org/ [Last accessed 1 September 2022]. - 11Fox, P, VSTO Team and SeSF Team. 2015.
Semantic search in solar-terrestrial sciences . In: Narock, T and Fox, P (eds.), The Semantic Web in Earth and Space Science: Current Status and Future Directions. Studies on the Semantic Web, Vol. 20. Amsterdam: IOS Press. pp. 127–146 DOI: 10.3233/978-1-61499-501-2-127 - 12Huffer, B, Cotnoir, M and Gleason, J. 2015. Ontology-drive data access at the NASA earth exchange. In: Ho, H, Chin Ooi, B, Zaki, MJ, et al., Proceedings: 2015 IEEE International Conference on Big Data (Big Data),
October 29–November 1, 2015 , Santa Clara, CA. n.p.: Piscataway, NJ:IEEE . pp. 2177–2181. DOI: 10.1109/BigData.2015.7364004 - 13Huffman, GJ. 2022.
Introduction to global precipitation algorithms and data sets . International Precipitation Working Group. Available at:http://ipwg.isac.cnr.it/data.html [Last accessed 1 September 2022]. - 14IPWG. 2022. International Precipitation Working Group. Available at:
http://ipwg.isac.cnr.it/ [Last accessed 1 September 2022]. - 15Lafia, S, Jablonski, J, Kuhn, W, Cooley, S and Medrano, FA. 2016. Spatial discovery and the research library. Transactions in GIS, 20(3): 399–412. DOI: 10.1111/tgis.12235
- 16Li, W, Goodchild, MF and Raskin, R. 2014. Towards geospatial semantic search: Exploiting latent semantic relations in geospatial data. International Journal of Digital Earth, 7(1): 17–37. DOI: 10.1080/17538947.2012.674561
- 17Liu, Z and Acker, J. 2017. Giovanni: The bridge between data and science. Eos, 98. DOI: 10.1029/2017EO079299
- 18Liu, Z, Shie, C-L, Ritrivi, AJ, Lei, G-D, Alcott, GT, Greene, M, Acker, J, Wei, JC, Meyer, DJ, Li, A and Al-Jazrawi, AF. 2022. Developing metrics for NASA earth science interdisciplinary data products and services. Data Science Journal, 21(1): 5. DOI: 10.5334/dsj-2022-005
- 19Mathiak, B, Juty, N, Bardi, A, Colomb, J and Kraker, P. 2023. What are researchers’ needs in data discovery? Analysis and ranking of a large-scale collection of crowdsourced use cases. Data Science Journal, 22(1): 3. DOI: 10.5334/dsj-2023-003
- 20McGibbney, LJ, Armstrong, EM, et al. 2019. Search relevance recommendations for earth science. Technical note ESDS-RFC-037. Available at:
https://www.earthdata.nasa.gov/s3fs-public/imported/ESDS-RFC-037v1.0.pdf [Last accessed 1 September 2022]. - 21Molod, A, Takacs, L, Suarez, M and Bacmeister, J. 2014. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geoscientific Model Development Discussions, 7(6): 7575–7617. DOI: 10.5194/gmdd-7-7575-2014
- 22Molod, A, Takacs, L, Suarez, M, Bacmeister, J, Song, I-S and Eichmann, A. 2012. The GEOS5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM–2012-104606, Vol. 28.
- 23Narock, T and Fox, P. (eds.) 2015. The Semantic Web in Earth and Space Science: Current Status and Future Directions. Studies on the Semantic Web, Vol. 20. Amsterdam: IOS Press. DOI: 10.3233/978-1-61499-501-2-127
- 24NASA DAACs. 2022. EOSDIS Distributed Active Archive Centers (DAAC). Available at:
https://earthdata.nasa.gov/eosdis/daacs [Last accessed 1 September 2022]. - 25NASA Earthdata. 2022a. Earthdata—Open access for open science. Available at:
https://www.earthdata.nasa.gov/ [Last accessed 1 September 2022]. - 26NASA Earthdata. 2022b. Data Pathfinders. Available at:
https://www.earthdata.nasa.gov/learn/pathfinders [Last accessed 1 September 2022]. - 27NASA Earthdata. 2022c. Earthdata Cloud evolution. Available at:
https://www.earthdata.nasa.gov/eosdis/cloud-evolution#:~:text=Further%20many%20of%20NASA’s%20EOSDIS,more%20data%20being%20added%20weekly [Last accessed 1 September 2022]. - 28NASA Earthdata. 2022d. Common Metadata Repository (CMR). Available at:
https://www.earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/cmr [Last accessed 1 September 2022]. - 29NASA Earthdata. 2022e. Unified Metadata Model (UMM). Available at:
https://www.earthdata.nasa.gov/unified-metadata-model-umm#:~:text=NASA’s%20UMM%20is%20an%20extensible,EOSDIS%20CMR%2Dsupported%20metadata%20standards [Last accessed 1 September 2022]. - 30NASA Earthdata. 2022f. EOSDIS data in the cloud: User requirements. Available at:
https://www.earthdata.nasa.gov/learn/articles/eosdis-data-cloud-user-requirements [Last accessed 1 September 2022]. - 31NASA Earthdata. 2022g. Data Product Development Guide for Data Producers. Available at:
https://www.earthdata.nasa.gov/esdis/esco/standards-and-references/data-product-development-guide-for-data-producers [Last accessed 1 September 2022]. - 32NASA EOSDIS. 2022a. Earth Observing System Data and Information System (EOSDIS). Available at:
https://earthdata.nasa.gov/eosdis [Last accessed 1 September 2022]. - 33NASA EOSDIS. 2022b. American Customer Satisfaction Index (ACSI) reports. Available at:
https://earthdata.nasa.gov/eosdis/system-performance/acsi-reports [Last accessed 1 September 2022]. - 34NASA GES DISC. 2022a. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Available at:
https://disc.gsfc.nasa.gov [Last accessed 1 September 2022]. - 35NASA GES DISC. 2022b. Migrating to the cloud. Available at:
https://disc.gsfc.nasa.gov/information/documents?title=Migrating%20to%20the%20Cloud [Last accessed 1 September 2022]. - 36NASA GES DISC. 2022c. How to obtain data for conducting hurricane case study. Available at:
https://disc.gsfc.nasa.gov/information/howto?keywords=hurricane&title=How%20to%20Obtain%20Data%20for%20Conducting%20Hurricane%20Case%20Study [Last accessed 1 September 2022]. - 37NASA Giovanni. 2022. NASA Giovanni. Available at:
https://giovanni.gsfc.nasa.gov [Last accessed 1 September 2022]. - 38Parsons, MA, Katz, DS, Langseth, M, Ramapriyan, H and Ramdeen, S. 2022. Credit where credit is due. Eos, 103. DOI: 10.1029/2022EO220239
- 39Ramapriyan, H and Behnke, J. 2020. NASA’s Earth Observing System Data and Information System (EOSDIS) and FAIR—A self-assessment. In: IN044—Improving Infrastructure for Trustworthy Digital Repositories to Enable Current and Future Use of Open Data in Developed and Developing Countries I. AGU Fall Meeting,
December 1–17, 2020 . - 40Raskin, RG and Pan, MJ. 2005. Knowledge representation in the semantic web for earth and environmental terminology (SWEET). Computers & Geosciences, 31(9): 1119–1125. DOI: 10.1016/j.cageo.2004.12.004
- 41RDA. 2022a. The RDA Data Discovery Paradigms Interest Group. Available at:
https://www.rd-alliance.org/groups/data-discovery-paradigms-ig [Last accessed 1 September 2022]. - 42RDA. 2022b. The Research Data Alliance (RDA). Available at:
https://www.rd-alliance.org/about-rda [Last accessed 1 September 2022]. - 43Stoyanova, K, Gerasimov, I, Mehrabian, A, Jahoda, E, Wei, J, Pham, L and Khayat, MG. 2021. Application of a dataset-publication knowledge graph for improving earth science data search. In: IN45E—Best Practices and Realities of Research Data Repositories III Poster. AGU Fall Meeting, New Orleans, LA,
December 13–17, 2021 . - 44Wang, C, Ma, X and Chen, J. 2018. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information. Computers & Geosciences, 115: 12–19. DOI: 10.1016/j.cageo.2018.03.004
- 45Wang, S, Wang, J, Zhan, Q, Zhang, L, Yao, X and Li, G. 2023. A unified representation method for interdisciplinary spatial earth data. Big Earth Data 7(1): 136–155. DOI: 10.1080/20964471.2022.2091310
- 46Weikum, G. 2013. Data discovery. Data Science Journal, 12: pp. GRDI26–GRDI31. DOI: 10.2481/dsj.GRDI-005
- 47Wikipedia. 2022. Air France Flight 447. Available at:
https://en.wikipedia.org/wiki/Air_France_Flight_447 [Last accessed 1 September 2022]. - 48Wilkinson, M, Dumontier, M, Aalbersberg, I, et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
- 49Wu, M, Psomopoulos, F, Khalsa, SJ and de Waard, A. 2019. Data discovery paradigms: User requirements and recommendations for data repositories. Data Science Journal, 18(1): 3. DOI: 10.5334/dsj-2019-003
- 50Wu, W-S, Purser, RJ and Parrish, DF. 2002. Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130: 2905–2916. DOI: 10.1175/1520-0493(2002)130<;2905:TDVAWS>2.0.CO;2
