Have a personal or library account? Click to login
Guidelines for Publicly Archiving Terrestrial Model Data to Enhance Usability, Intercomparison, and Synthesis Cover

References

  1. 1Arora, B, Bill, M, Conrad, M, Dong, W, Faybishenko, B, Molins, S, Spycher, N, Steefel, C, Tokunaga, T, Wan, J and Williams, K. 2019. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment, Biogeochemistry: Dataset. Watershed Function SFA, ESS-DIVE repository. Dataset. Accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.21952/WTR/1506937 on 2021-11-15
  2. 2Arora, VK, et al. 2020. ‘Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models’. Biogeosciences, 17(16): 41734222. DOI: 10.5194/bg-17-4173-2020
  3. 3Baker, KS and Mayernik, MS. 2020. ‘Disentangling knowledge production and data production’. Ecosphere, 11(7): e03191. DOI: 10.1002/ecs2.3191
  4. 4Bieger, K, et al. 2017. ‘Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool’. JAWRA Journal of the American Water Resources Association, 53(1): 115130. DOI: 10.1111/1752-1688.12482
  5. 5Bisht, G, et al. 2017. ‘Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)’. Geoscientific Model Development, 10(12): 45394562. DOI: 10.5194/gmd-10-4539-2017
  6. 6Comins, HN and McMurtrie, RE. 1993. ‘Long-Term Response of Nutrient-Limited Forests to CO”2 Enrichment; Equilibrium Behavior of Plant-Soil Models’. Ecological Applications, 3(4): 666681. DOI: 10.2307/1942099
  7. 7Coon, ET, et al. 2020. ‘Coupling surface flow and subsurface flow in complex soil structures using mimetic finite differences’. Advances in Water Resources, 144: 103701. DOI: 10.1016/j.advwatres.2020.103701
  8. 8Cromwell, E, et al. 2021. ‘Estimating Watershed Subsurface Permeability From Stream Discharge Data Using Deep Neural Networks’. Frontiers in Earth Science, 9: 3. DOI: 10.3389/feart.2021.613011
  9. 9Crystal-Ornelas, R, et al. 2021. ‘A Guide to Using GitHub for Developing and Versioning Data Standards and Reporting Formats’. Earth and Space Science, 8(8): e2021EA001797. DOI: 10.1029/2021EA001797
  10. 10Digiampietri, L, Medeiros, C, Setubal, J and Barga, R. 2007. Traceability Mechanisms for Bioinformatics Scientific Workflows. AAAI Workshop – Technical Report.
  11. 11Durack, P, et al. 2018. ‘Toward Standardized Data Sets for Climate Model Experimentation’. Eos, 2 July. Available at: http://eos.org/science-updates/toward-standardized-data-sets-for-climate-model-experimentation (Accessed: 15 November 2021). DOI: 10.1029/2018EO101751
  12. 12Dwivedi, D. 2019. Hot spots and hot moments of nitrogen in a riparian corridor, Water Resources Research: Dataset. Watershed Function SFA, ESS-DIVE repository. Dataset. Accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.21952/WTR/1506939 on 2021-11-15. DOI: 10.21952/WTR/1506939
  13. 13Dwivedi, D, et al. 2018. ‘Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor’. Water Resources Research, 54(1): 205222. DOI: 10.1002/2017WR022346
  14. 14Fer, I, et al. 2021. ‘Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration’. Global Change Biology, 27(1): 1326. DOI: 10.1111/gcb.15409
  15. 15Fisher, RA and Koven, CD. 2020. ‘Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems’. Journal of Advances in Modeling Earth Systems, 12(4): e2018MS001453. DOI: 10.1029/2018MS001453
  16. 16Friedlingstein, P, et al. 2020. ‘Global Carbon Budget 2020’, Earth System Science Data, 12(4): 32693340. DOI: 10.5194/essd-12-3269-2020
  17. 17Fung, I. 1993. Goddard Institute for Space Studies (GISS) 3-Dimensional (3-D) Global Tracer Transport Model (DB1006). Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA) Goddard Institute for Space Studies (GISS), NASA, ESS-DIVE repository. Dataset.accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.3334/CDIAC/CYC.DB1006 on 2021-11-15. DOI: 10.3334/CDIAC/cyc.db1006
  18. 18Goeva, A, Stoudt, S and Trisovic, A. 2020. ‘Toward Reproducible and Extensible Research: from Values to Action’. Harvard Data Science Review, 2(4). DOI: 10.1162/99608f92.1cc3d72a
  19. 19Golaz, J-C, et al. 2019. ‘The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution’. Journal of Advances in Modeling Earth Systems, 11(7): 20892129. DOI: 10.1029/2018MS001603
  20. 20Hammond, GE, Lichtner, PC and Mills, RT. 2014. ‘Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN’. Water Resour. Res., 50(1): 208228. DOI: 10.1002/2012WR013483
  21. 21Hanson, B. 2020. “Data policies and practices for AGU publications for models and model output”. Presented at the National Science Foundation EarthCube Model Data RCN Workshop.
  22. 22Harp, DR, et al. 2016. ‘Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis’. The Cryosphere, 10(1): 341358. DOI: 10.5194/tc-10-341-2016
  23. 23Hilton, TW and Baker, IT. 2018. SiB3 simulations of gross primary productivity(GPP) and carbonyl sulfide (COS) plant flux. Scaling from Flux Towers to Ecosystem Models: Regional Constraints on Carbon Cycle Processes from Atmospheric Carbonyl Sulfide, ESS-DIVE repository. Dataset. accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1460838 on 2021-11-15. DOI: 10.15485/1460838
  24. 24Huang, Y, et al. 2019. ‘Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models’. Geoscientific Model Development, 12(3): 11191137. DOI: 10.5194/gmd-12-1119-2019
  25. 25Hubbard, SS, et al. 2018. ‘The East River, Colorado, Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multiscale Hydrological–Biogeochemical Dynamics’. Vadose Zone Journal, 17. DOI: 10.2136/vzj2018.03.0061
  26. 26Huntzinger, DN, et al. 2013. ‘The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design’. Geoscientific Model Development, 6(6): 21212133. DOI: 10.5194/gmd-6-2121-2013
  27. 27Jan, A, Coon, ET and Painter, SL. 2020. ‘Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site’. Geoscientific Model Development, 13(5): 22592276. DOI: 10.5194/gmd-13-2259-2020
  28. 28Jan, A, Coon, ET and Painter, SL. 2021. ‘Toward more mechanistic representations of biogeochemical processes in river networks: Implementation and demonstration of a multiscale model’, Environmental Modelling & Software, 145: 105166. DOI: 10.1016/j.envsoft.2021.105166
  29. 29Jones, CD, et al. 2016. ‘C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6’. Geoscientific Model Development, 9(8): 28532880. DOI: 10.5194/gmd-9-2853-2016
  30. 30Koven, C. 2020. ckoven/runscripts: version 1.0 of ckoven/runscripts. Zenodo. DOI: 10.5281/zenodo.3785703
  31. 31Koven, CD, et al. 2020. ‘Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama’. Biogeosciences, 17(11): 30173044. DOI: 10.5194/bg-17-3017-2020
  32. 32Lawrence, DM, et al. 2019. ‘The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty’. Journal of Advances in Modeling Earth Systems, 11(12): 42454287. DOI: 10.1029/2018MS001583
  33. 33Longo, M, et al. 2019. ‘The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description’. Geoscientific Model Development, 12(10): 43094346. DOI: 10.5194/gmd-12-4309-2019
  34. 34Markstrom, SL, et al. 2015. PRMS-IV, the precipitation-runoff modeling system, version 4, PRMS-IV, the precipitation-runoff modeling system, version 4. USGS Numbered Series 6-B7. Reston, VA: U.S. Geological Survey, 169. DOI: 10.3133/tm6B7
  35. 35McGuire, AD, et al. 2018. ‘Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change’. Proceedings of the National Academy of Sciences, 115(15): 38823887. DOI: 10.1073/pnas.1719903115
  36. 36Mekonnen, ZA, et al. 2019 ‘Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire’. Nature Plants, 5(9): 952958. DOI: 10.1038/s41477-019-0495-8
  37. 37National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and Replicability in Science. Washington, DC: The National Academies Press. DOI: 10.17226/25303
  38. 38Phillips, TJ, et al. 2017. ‘Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the U.S. Southern Great Plains’. Journal of Geophysical Research: Atmospheres, 122(21): 11,52411,548. DOI: 10.1002/2017JD027141
  39. 39Riley, WJ, et al. 2021. ‘Non-growing season plant nutrient uptake controls Arctic tundra vegetation composition under future climate’. 16(7): 074047. DOI: 10.1088/1748-9326/ac0e63
  40. 40Riley, WJ, Zhu, Q and Tang, JY. 2018. ‘Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods’. Nature Climate Change, 8(11): 10021006. DOI: 10.1038/s41558-018-0325-4
  41. 41Sansone, S-A, et al. 2019. ‘FAIRsharing as a community approach to standards, repositories and policies’. Nature Biotechnology, 37(4): 358367. DOI: 10.1038/s41587-019-0080-8
  42. 42Simmonds, MB, Riley, WJ, Agarwal, DA, Chen, X, Cholia, S, Crystal-Ornelas, R, Coon, ET, Dwivedi, D, Huang, M, Jan, A, Kakalia, Z, Kumar, J, Koven, CD, Li, L, Melara, M, Ricciuto, DM, Walker, AP, Zhi, W, Zhu, Q and Varadharajan, C. 2021. ESS-DIVE guidelines for archiving terrestrial model data. Environmental Systems Science Data Infrastructure for a Virtual Ecosystem, ESS-DIVE repository. Dataset. Accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1813868 on 2021-11-16. DOI: 10.15485/1813868
  43. 43Smith, B, Prentice, IC and Sykes, MT. 2001. ‘Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space’. Global Ecology and Biogeography, 10(6): 621637. DOI: 10.1046/j.1466-822X.2001.t01-1-00256.x
  44. 44Smith, M, et al. 2013. ‘The distributed model intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments’. Journal of Hydrology, 507: 300329. DOI: 10.1016/j.jhydrol.2013.08.040
  45. 45Sood, A and Smakhtin, V. 2015. ‘Global hydrological models: a review’. Hydrological Sciences Journal, 60(4), 549565. DOI: 10.1080/02626667.2014.950580
  46. 46Stall, S, et al. 2019. ‘Make scientific data FAIR’. Nature, 570(7759): 2729. DOI: 10.1038/d41586-019-01720-7
  47. 47Steefel, CI and Molins, S. 2009. ‘CrunchFlow’, Software for modeling multicomponent reactive flow and transport. User’s manual. Berkeley: Lawrence Berkeley National Laboratory [Preprint].
  48. 48Varadharajan, C, et al. 2019. ‘Launching an Accessible Archive of Environmental Data’. Eos. DOI: 10.1029/2019EO111263
  49. 49Velliquette, T, Welch, J, Crow, M, Devarakonda, R, Heinz, S and Crystal-Ornelas, R. 2021. ESS-DIVE Reporting Format for File-level Metadata. Environmental Systems Science Data Infrastructure for a Virtual Ecosystem, ESS-DIVE repository. Dataset. Accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1734840 on 2021-11-16. DOI: 10.15485/1734840
  50. 50Vittorio, AD and Simmonds, M. 2019. aldivi/caland: CALAND v3.0.0. Zenodo. DOI: 10.5281/zenodo.3256727
  51. 51Walker, AP, et al. 2014. ‘Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration’. Journal of Geophysical Research: Biogeosciences, 119(5): 937964. DOI: 10.1002/2013JG002553
  52. 52Walker, AP, et al. 2019. ‘Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment’. Nature Communications, 10(1): p. 454. DOI: 10.1038/s41467-019-08348-1
  53. 53Walker, AP, De Kauwe, MG, Medlyn, B, Zaehle, S, Asao, S, Guenet, B, Harper, A, Hickler, T, Jain, AK, Luo, Y, Lu, X, Luus, K, Shu, S, Wang, Y, Werner, C, Xia, J and Norby, RJ. 2018. FACE-MDS Phase 2: Model Output. Free Air CO2 Enrichment Model Data Synthesis (FACE-MDS), ESS-DIVE repository. Dataset. Accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1480327 on 2021-11-15. DOI: 10.1038/s41467-019-08348-1
  54. 54Walker, AP, Yang, B, Boden, T, De Kauwe, MG, Fenstermaker, LF, Medlyn, B, Megonigal, JP, Oren, R, Pendall, E, Zak, DR, Zaehle, S, Burton, AJ, Drake, BG, Evans, RD, Hungate, B, Johnson, DP, Kim, D, LeCain, D, Lewin, KF, Lu, M, Mueller, KF, Nowak, RS, Riggs, JS, Smith, SD, Tharp, LM, Zelikova, TJ and Norby, RJ. 2018. FACE-MDS Phase 2: Meteorological Data and Protocols. Free Air CO2 Enrichment Model Data Synthesis (FACE-MDS), ESS-DIVE repository. Dataset. Accessed via https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1480328 on 2021-11-16. DOI: 10.15485/1480328
  55. 55Walker, AP and Ye, M, et al. 2018. ‘The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources’. Geoscientific Model Development, 11(8): 31593185. DOI: 10.5194/gmd-11-3159-2018
  56. 56Wilkinson, MD, et al. 2016. ‘The FAIR Guiding Principles for scientific data management and stewardship’. Scientific Data, 3: p. 160018. DOI: 10.1038/sdata.2016.18
  57. 57Woodward, FI and Lomas, MR. 2004. ‘Vegetation dynamics – simulating responses to climatic change’. Biological Reviews, 79(3): 643670. DOI: 10.1017/S1464793103006419
  58. 58Zhi, W, et al. (2019) ‘Distinct Source Water Chemistry Shapes Contrasting Concentration-Discharge Patterns’. Water Resources Research, 55(5): 42334251. DOI: 10.1029/2018WR024257
  59. 59Zhu, B, et al. 2020. ‘Effects of Irrigation on Water, Carbon, and Nitrogen Budgets in a Semiarid Watershed in the Pacific Northwest: A Modeling Study’. Journal of Advances in Modeling Earth Systems, 12(9): e2019MS001953. DOI: 10.1029/2019MS001953
  60. 60Zhu, B, et al. 2021. ‘Impact of Vegetation Physiology and Phenology on Watershed Hydrology in a Semiarid Watershed in the Pacific Northwest in a Changing Climate’. Water Resources Research, 57(3): e2020WR028394. DOI: 10.1029/2020WR028394
  61. 61Zhu, Q, Riley, WJ and Tang, J. 2017. ‘A new theory of plant–microbe nutrient competition resolves inconsistencies between observations and model predictions’. Ecological Applications, 27(3): 875886. DOI: 10.1002/eap.1490
Language: English
Submitted on: Jun 22, 2021
Accepted on: Nov 23, 2021
Published on: Feb 7, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Maegen B. Simmonds, William J. Riley, Deborah A. Agarwal, Xingyuan Chen, Shreyas Cholia, Robert Crystal-Ornelas, Ethan T. Coon, Dipankar Dwivedi, Valerie C. Hendrix, Maoyi Huang, Ahmad Jan, Zarine Kakalia, Jitendra Kumar, Charles D. Koven, Li Li, Mario Melara, Lavanya Ramakrishnan, Daniel M. Ricciuto, Anthony P. Walker, Wei Zhi, Qing Zhu, Charuleka Varadharajan, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.