References
- 1Arora, B, Bill, M, Conrad, M, Dong, W, Faybishenko, B, Molins, S, Spycher, N, Steefel, C, Tokunaga, T, Wan, J and Williams, K. 2019. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment, Biogeochemistry: Dataset. Watershed Function SFA, ESS-DIVE repository. Dataset. Accessed via
https://data.ess-dive.lbl.gov/datasets/doi:10.21952/WTR/1506937 on 2021-11-15 - 2Arora, VK, et al. 2020. ‘Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models’. Biogeosciences, 17(16): 4173–4222. DOI: 10.5194/bg-17-4173-2020
- 3Baker, KS and Mayernik, MS. 2020. ‘Disentangling knowledge production and data production’. Ecosphere, 11(7):
e03191 . DOI: 10.1002/ecs2.3191 - 4Bieger, K, et al. 2017. ‘Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool’. JAWRA Journal of the American Water Resources Association, 53(1): 115–130. DOI: 10.1111/1752-1688.12482
- 5Bisht, G, et al. 2017. ‘Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)’. Geoscientific Model Development, 10(12): 4539–4562. DOI: 10.5194/gmd-10-4539-2017
- 6Comins, HN and McMurtrie, RE. 1993. ‘Long-Term Response of Nutrient-Limited Forests to CO”2 Enrichment; Equilibrium Behavior of Plant-Soil Models’. Ecological Applications, 3(4): 666–681. DOI: 10.2307/1942099
- 7Coon, ET, et al. 2020. ‘Coupling surface flow and subsurface flow in complex soil structures using mimetic finite differences’. Advances in Water Resources, 144:
103701 . DOI: 10.1016/j.advwatres.2020.103701 - 8Cromwell, E, et al. 2021. ‘Estimating Watershed Subsurface Permeability From Stream Discharge Data Using Deep Neural Networks’. Frontiers in Earth Science, 9: 3. DOI: 10.3389/feart.2021.613011
- 9Crystal-Ornelas, R, et al. 2021. ‘A Guide to Using GitHub for Developing and Versioning Data Standards and Reporting Formats’. Earth and Space Science, 8(8):
e2021EA001797 . DOI: 10.1029/2021EA001797 - 10Digiampietri, L, Medeiros, C, Setubal, J and Barga, R. 2007. Traceability Mechanisms for Bioinformatics Scientific Workflows. AAAI Workshop – Technical Report.
- 11Durack, P, et al. 2018. ‘Toward Standardized Data Sets for Climate Model Experimentation’. Eos, 2 July. Available at:
http://eos.org/science-updates/toward-standardized-data-sets-for-climate-model-experimentation (Accessed: 15 November 2021). DOI: 10.1029/2018EO101751 - 12Dwivedi, D. 2019. Hot spots and hot moments of nitrogen in a riparian corridor, Water Resources Research: Dataset. Watershed Function SFA, ESS-DIVE repository. Dataset. Accessed via
https://data.ess-dive.lbl.gov/datasets/doi:10.21952/WTR/1506939 on 2021-11-15. DOI: 10.21952/WTR/1506939 - 13Dwivedi, D, et al. 2018. ‘Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor’. Water Resources Research, 54(1): 205–222. DOI: 10.1002/2017WR022346
- 14Fer, I, et al. 2021. ‘Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration’. Global Change Biology, 27(1): 13–26. DOI: 10.1111/gcb.15409
- 15Fisher, RA and Koven, CD. 2020. ‘Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems’. Journal of Advances in Modeling Earth Systems, 12(4):
e2018MS001453 . DOI: 10.1029/2018MS001453 - 16Friedlingstein, P, et al. 2020. ‘Global Carbon Budget 2020’, Earth System Science Data, 12(4): 3269–3340. DOI: 10.5194/essd-12-3269-2020
- 17Fung, I. 1993.
Goddard Institute for Space Studies (GISS) 3-Dimensional (3-D) Global Tracer Transport Model (DB1006) . Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA) Goddard Institute for Space Studies (GISS), NASA, ESS-DIVE repository. Dataset.accessed viahttps://data.ess-dive.lbl.gov/datasets/doi:10.3334/CDIAC/CYC.DB1006 on 2021-11-15. DOI: 10.3334/CDIAC/cyc.db1006 - 18Goeva, A, Stoudt, S and Trisovic, A. 2020. ‘Toward Reproducible and Extensible Research: from Values to Action’. Harvard Data Science Review, 2(4). DOI: 10.1162/99608f92.1cc3d72a
- 19Golaz, J-C, et al. 2019. ‘The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution’. Journal of Advances in Modeling Earth Systems, 11(7): 2089–2129. DOI: 10.1029/2018MS001603
- 20Hammond, GE, Lichtner, PC and Mills, RT. 2014. ‘Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN’. Water Resour. Res., 50(1): 208–228. DOI: 10.1002/2012WR013483
- 21Hanson, B. 2020. “Data policies and practices for AGU publications for models and model output”. Presented at the National Science Foundation EarthCube Model Data RCN Workshop.
- 22Harp, DR, et al. 2016. ‘Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis’. The Cryosphere, 10(1): 341–358. DOI: 10.5194/tc-10-341-2016
- 23Hilton, TW and Baker, IT. 2018. SiB3 simulations of gross primary productivity(GPP) and carbonyl sulfide (COS) plant flux. Scaling from Flux Towers to Ecosystem Models: Regional Constraints on Carbon Cycle Processes from Atmospheric Carbonyl Sulfide, ESS-DIVE repository. Dataset. accessed via
https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1460838 on 2021-11-15. DOI: 10.15485/1460838 - 24Huang, Y, et al. 2019. ‘Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models’. Geoscientific Model Development, 12(3): 1119–1137. DOI: 10.5194/gmd-12-1119-2019
- 25Hubbard, SS, et al. 2018. ‘The East River, Colorado, Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multiscale Hydrological–Biogeochemical Dynamics’. Vadose Zone Journal, 17. DOI: 10.2136/vzj2018.03.0061
- 26Huntzinger, DN, et al. 2013. ‘The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design’. Geoscientific Model Development, 6(6): 2121–2133. DOI: 10.5194/gmd-6-2121-2013
- 27Jan, A, Coon, ET and Painter, SL. 2020. ‘Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site’. Geoscientific Model Development, 13(5): 2259–2276. DOI: 10.5194/gmd-13-2259-2020
- 28Jan, A, Coon, ET and Painter, SL. 2021. ‘Toward more mechanistic representations of biogeochemical processes in river networks: Implementation and demonstration of a multiscale model’, Environmental Modelling & Software, 145:
105166 . DOI: 10.1016/j.envsoft.2021.105166 - 29Jones, CD, et al. 2016. ‘C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6’. Geoscientific Model Development, 9(8): 2853–2880. DOI: 10.5194/gmd-9-2853-2016
- 30Koven, C. 2020. ckoven/runscripts: version 1.0 of ckoven/runscripts. Zenodo. DOI: 10.5281/zenodo.3785703
- 31Koven, CD, et al. 2020. ‘Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama’. Biogeosciences, 17(11): 3017–3044. DOI: 10.5194/bg-17-3017-2020
- 32Lawrence, DM, et al. 2019. ‘The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty’. Journal of Advances in Modeling Earth Systems, 11(12): 4245–4287. DOI: 10.1029/2018MS001583
- 33Longo, M, et al. 2019. ‘The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description’. Geoscientific Model Development, 12(10): 4309–4346. DOI: 10.5194/gmd-12-4309-2019
- 34Markstrom, SL, et al. 2015. PRMS-IV, the precipitation-runoff modeling system, version 4, PRMS-IV, the precipitation-runoff modeling system, version 4. USGS Numbered Series 6-B7. Reston, VA: U.S. Geological Survey, 169. DOI: 10.3133/tm6B7
- 35McGuire, AD, et al. 2018. ‘Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change’. Proceedings of the National Academy of Sciences, 115(15): 3882–3887. DOI: 10.1073/pnas.1719903115
- 36Mekonnen, ZA, et al. 2019 ‘Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire’. Nature Plants, 5(9): 952–958. DOI: 10.1038/s41477-019-0495-8
- 37National Academies of Sciences, Engineering, and Medicine. 2019. Reproducibility and Replicability in Science. Washington, DC: The National Academies Press. DOI: 10.17226/25303
- 38Phillips, TJ, et al. 2017. ‘Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the U.S. Southern Great Plains’. Journal of Geophysical Research: Atmospheres, 122(21): 11,524–11,548. DOI: 10.1002/2017JD027141
- 39Riley, WJ, et al. 2021. ‘Non-growing season plant nutrient uptake controls Arctic tundra vegetation composition under future climate’. 16(7):
074047 . DOI: 10.1088/1748-9326/ac0e63 - 40Riley, WJ, Zhu, Q and Tang, JY. 2018. ‘Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods’. Nature Climate Change, 8(11): 1002–1006. DOI: 10.1038/s41558-018-0325-4
- 41Sansone, S-A, et al. 2019. ‘FAIRsharing as a community approach to standards, repositories and policies’. Nature Biotechnology, 37(4): 358–367. DOI: 10.1038/s41587-019-0080-8
- 42Simmonds, MB, Riley, WJ, Agarwal, DA, Chen, X, Cholia, S, Crystal-Ornelas, R, Coon, ET, Dwivedi, D, Huang, M, Jan, A, Kakalia, Z, Kumar, J, Koven, CD, Li, L, Melara, M, Ricciuto, DM, Walker, AP, Zhi, W, Zhu, Q and Varadharajan, C. 2021. ESS-DIVE guidelines for archiving terrestrial model data. Environmental Systems Science Data Infrastructure for a Virtual Ecosystem, ESS-DIVE repository. Dataset. Accessed via
https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1813868 on 2021-11-16. DOI: 10.15485/1813868 - 43Smith, B, Prentice, IC and Sykes, MT. 2001. ‘Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space’. Global Ecology and Biogeography, 10(6): 621–637. DOI: 10.1046/j.1466-822X.2001.t01-1-00256.x
- 44Smith, M, et al. 2013. ‘The distributed model intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments’. Journal of Hydrology, 507: 300–329. DOI: 10.1016/j.jhydrol.2013.08.040
- 45Sood, A and Smakhtin, V. 2015. ‘Global hydrological models: a review’. Hydrological Sciences Journal, 60(4), 549–565. DOI: 10.1080/02626667.2014.950580
- 46Stall, S, et al. 2019. ‘Make scientific data FAIR’. Nature, 570(7759): 27–29. DOI: 10.1038/d41586-019-01720-7
- 47Steefel, CI and Molins, S. 2009.
‘CrunchFlow’ , Software for modeling multicomponent reactive flow and transport. User’s manual. Berkeley: Lawrence Berkeley National Laboratory [Preprint]. - 48Varadharajan, C, et al. 2019. ‘Launching an Accessible Archive of Environmental Data’. Eos. DOI: 10.1029/2019EO111263
- 49Velliquette, T, Welch, J, Crow, M, Devarakonda, R, Heinz, S and Crystal-Ornelas, R. 2021. ESS-DIVE Reporting Format for File-level Metadata. Environmental Systems Science Data Infrastructure for a Virtual Ecosystem, ESS-DIVE repository. Dataset. Accessed via
https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1734840 on 2021-11-16. DOI: 10.15485/1734840 - 50Vittorio, AD and Simmonds, M. 2019. aldivi/caland: CALAND v3.0.0. Zenodo. DOI: 10.5281/zenodo.3256727
- 51Walker, AP, et al. 2014. ‘Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration’. Journal of Geophysical Research: Biogeosciences, 119(5): 937–964. DOI: 10.1002/2013JG002553
- 52Walker, AP, et al. 2019. ‘Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment’. Nature Communications, 10(1): p. 454. DOI: 10.1038/s41467-019-08348-1
- 53Walker, AP, De Kauwe, MG, Medlyn, B, Zaehle, S, Asao, S, Guenet, B, Harper, A, Hickler, T, Jain, AK, Luo, Y, Lu, X, Luus, K, Shu, S, Wang, Y, Werner, C, Xia, J and Norby, RJ. 2018. FACE-MDS Phase 2: Model Output. Free Air CO2 Enrichment Model Data Synthesis (FACE-MDS), ESS-DIVE repository. Dataset. Accessed via
https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1480327 on 2021-11-15. DOI: 10.1038/s41467-019-08348-1 - 54Walker, AP, Yang, B, Boden, T, De Kauwe, MG, Fenstermaker, LF, Medlyn, B, Megonigal, JP, Oren, R, Pendall, E, Zak, DR, Zaehle, S, Burton, AJ, Drake, BG, Evans, RD, Hungate, B, Johnson, DP, Kim, D, LeCain, D, Lewin, KF, Lu, M, Mueller, KF, Nowak, RS, Riggs, JS, Smith, SD, Tharp, LM, Zelikova, TJ and Norby, RJ. 2018. FACE-MDS Phase 2: Meteorological Data and Protocols. Free Air CO2 Enrichment Model Data Synthesis (FACE-MDS), ESS-DIVE repository. Dataset. Accessed via
https://data.ess-dive.lbl.gov/datasets/doi:10.15485/1480328 on 2021-11-16. DOI: 10.15485/1480328 - 55Walker, AP and Ye, M, et al. 2018. ‘The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources’. Geoscientific Model Development, 11(8): 3159–3185. DOI: 10.5194/gmd-11-3159-2018
- 56Wilkinson, MD, et al. 2016. ‘The FAIR Guiding Principles for scientific data management and stewardship’. Scientific Data, 3: p.
160018 . DOI: 10.1038/sdata.2016.18 - 57Woodward, FI and Lomas, MR. 2004. ‘Vegetation dynamics – simulating responses to climatic change’. Biological Reviews, 79(3): 643–670. DOI: 10.1017/S1464793103006419
- 58Zhi, W, et al. (2019) ‘Distinct Source Water Chemistry Shapes Contrasting Concentration-Discharge Patterns’. Water Resources Research, 55(5): 4233–4251. DOI: 10.1029/2018WR024257
- 59Zhu, B, et al. 2020. ‘Effects of Irrigation on Water, Carbon, and Nitrogen Budgets in a Semiarid Watershed in the Pacific Northwest: A Modeling Study’. Journal of Advances in Modeling Earth Systems, 12(9):
e2019MS001953 . DOI: 10.1029/2019MS001953 - 60Zhu, B, et al. 2021. ‘Impact of Vegetation Physiology and Phenology on Watershed Hydrology in a Semiarid Watershed in the Pacific Northwest in a Changing Climate’. Water Resources Research, 57(3):
e2020WR028394 . DOI: 10.1029/2020WR028394 - 61Zhu, Q, Riley, WJ and Tang, J. 2017. ‘A new theory of plant–microbe nutrient competition resolves inconsistencies between observations and model predictions’. Ecological Applications, 27(3): 875–886. DOI: 10.1002/eap.1490
