References
- 1Aigner, MB. 2020. Proof of Concept tool: Making maDMPs human readable. DOI: 10.5281/zenodo.3727714
- 2Alkhatib, H and Rivera, C. 2020. Proof of Concept tool: Making maDMPs human readable. DOI: 10.5281/zenodo.3727724
- 3Archer, P. 2014. Data catalog vocabulary (dcat) (w3c recommendation), Online. URL:
https://www.w3.org/TR/vocab-dcat/ . - 4Bakos, A, Miksa, T and Rauber, A. 2018.
Research data preservation using process engines and machine-actionable data management plans . In: ‘TPDL’, Vol. 11057 of Lecture Notes in Computer Science, 69–80. Springer. DOI: 10.1007/978-3-030-00066-0_6 - 5Breitenfellner, H. 2020. Proof of Concept tool: RDM Organizer to maDMP export. DOI: 10.5281/zenodo.3727753
- 6Dalpiaz, F and Brinkkemper, S. 2018. Agile requirements engineering with user stories. In: ‘2018 IEEE 26th International Requirements Engineering Conference (RE)’, 506–507. DOI: 10.1109/RE.2018.00075
- 7DCC. 2013. Checklist for a Data Management Plan. v.4.0. Edinburgh: Digital Curation Centre.
http://www.dcc.ac.uk/resources/data-management-plans . Online; accessed 29 March 2018. - 8Doorn, P. 2018. Science Europe Practical Guide to the International Alignment of Research Data Management.
- 9Engelhardt, C, Enke, H, Klar, J, Ludwig, J and Neuroth, H. 2017. Research data management organiser. In: Proceedings of the 14th International Conference on Digital Preservation.
iPRES 2017 , Kyoto, Japan,September 25–29, 2017 . - 10Hevner, AR, March, ST, Park, J and Ram, S. 2004. Design science in information systems research. MIS Q, 28(1): 75–105. DOI: 10.2307/25148625
- 11Hido1994 and Alhirthani, A. 2020. Dataverse and maDMPs integration PoC. DOI: 10.5281/zenodo.3727707
- 12Inschlag, L and Drechsel, M. 2020. Proof of Concept tool: DMP Roadmap to maDMP export. DOI: 10.5281/zenodo.3727757
- 13Jones, S, Pergl, R, Hooft, R, Miksa, T, Samors, R, Ungvari, J, Davis, RI and Lee, T. 2020. Data management planning: How requirements and solutions are beginning to converge. Data Intelligence, 2(1–2): 208–219. DOI: 10.1162/dint_a_00043
- 14Leidinger, M. 2020. Proof of Concept tool: Making maDMPs human readable. DOI: 10.5281/zenodo.3727720
- 15Michener, WK. 2015. Ten simple rules for creating a good data management plan. PLoS Comput Biol, 11. DOI: 10.1371/journal.pcbi.1004525
- 16Miksa, T, Cardoso, J and Borbinha, JL. 2018. Framing the scope of the common data model for machine-actionable data management plans. In: Abe, N, Liu, H, Pu, C, Hu, X, Ahmed, NK, Qiao, M, Song, Y, Kossmann, D, Liu, B, Lee, K, Tang, J, He, J and Saltz, JS (eds.), IEEE International Conference on Big Data. Big Data 2018. Seattle, WA, USA,
December 10–13, 2018 .IEEE , 2733–2742. DOI: 10.1109/BigData.2018.8622618 - 17Miksa, T, Neish, P, Walk, P and Rauber, A. 2018. Defining requirements for machine-actionable data management plans. In: McGovern, N and Whiteside, A (eds.), Proceedings of the 15th International Conference on Digital Preservation.
iPRES 2018 . Boston, MA, USA,September 24–28, 2018 . URL:https://hdl.handle.net/11353/10.923628 . - 18Miksa, T, Rauber, A, Ganguly, R and Budroni, P. 2017. Information integration for machine actionable data management plans. IJDC, 12(1): 22–35. URL:
http://www.ijdc.net/index.php/ijdc/article/view/12.1.22 . - 19Miksa, T, Simms, S, Mietchen, D and Jones, S. 2019. Ten principles for machine-actionable data management plans. PLOS Computational Biology, 15(3): 1–15. DOI: 10.2218/ijdc.v12i1.529
- 20Miksa, T, Walk, P and Neish, P. 2019. RDA DMP Common Standard for Machine-actionable Data Management Plans. DOI: 10.1371/journal.pcbi.1006750
- 21Oblasser, S. 2019. Machine-actionable dmp application (dmap). The slides are based on a live demo given at RDA 14th Plenary taking place in Helsinki between 22–25 October 2019. Further session material can be found here:
https://www.rd-alliance.org/p14-helsinki-slides . DOI: 10.5281/zenodo.3522247 - 22Oblasser, S. 2020. oblassers/dmap-mockups: Dmap mockups. DOI: 10.5281/zenodo.3630375
- 23Oblasser, S and Miksa, T. 2019. BPMN Processes for machine-actionable DMPs. DOI: 10.5281/zenodo.2607556
- 24Oblasser, S, Miksa, T and Kitamoto, A. 2020. Finding a repository with the help of machine-actionable DMPs: opportunities and challenges. DOI: 10.5281/zenodo.3701564
- 25Pergl, R, Hooft, R, Suchánek, M, Knaisl, V and Slifka, J. 2019. Data Stewardship Wizard: A Tool Bringing Together Researchers, Data Stewards, and Data Experts around Data Management Planning. Data Science Journal, 18(1). DOI: 10.5334/dsj-2019-059
- 26Pichler, M. 2019. martinpichler/dmp-roadmap-parser: Release version 0.1. DOI: 10.5281/zenodo.3250398
- 27Renner, T. 2020. Turbo-charging data management plans. DOI: 10.5281/zenodo.3673058
- 28Rust, S. 2019. Implementing maDMPs in DMPonline, RDA Webinar. URL:
https://www.rd-alliance.org/rda-output-adoption-webinar-series-data-management-plans . - 29Simms, S, Jones, S, Mietchen, D and Miksa, T. 2017. Machine-actionable data management plans (madmps). Research Ideas and Outcomes, 3:
e13086 . DOI: 10.3897/rio.3.e13086 - 30Simms, SR, Jones, S, Miksa, T, Mietchen, D, Simons, N and Unsworth, K. 2018. A landscape survey of activedmps. IJDC, 13(1): 204–214. DOI: 10.2218/ijdc.v13i1.629
- 31Smale, N, Unsworth, K, Denyer, G and Barr, D. 2018. The history, advocacy and efficacy of data management plans. bioRxiv. URL:
https://www.biorxiv.org/content/early/2018/10/17/443499 . DOI: 10.1101/443499 - 32Tsepelakis, S. 2020. SotosTsepe/invenio-madmp: First pre-alpha release of invenio-madmp. DOI: 10.5281/zenodo.3733268
