References
- 1Australia FAIR Access Working Group. 2017. Policy Statement on FAIR Access to Australia’s Research Outputs. Version: Jan 2017. Available at:
https://www.fair-access.net.au/fair-statement . - 2Baker, KS, Duerr, RE and Parsons, MA. 2016. Scientific Knowledge Mobilization: Co-evolution of Data Products and Designated Communities. International Journal of Digital Curation, 10(2): 110–135. DOI: 10.2218/ijdc.v10i2.346
- 3Barsi, Á, Kugler, Z, Juhász, A, Szabó, G, Batini, C, Abdulmuttalib, H, Huang, G and Shen, H. 2019. Remote sensing data quality model: from data sources to lifecycle phases. International Journal of Image and Data Fusion, 10(4): 280–99. DOI: 10.1080/19479832.2019.1625977
- 4Borda, A, Gray, K and Fu, Y. 2020. Research data management in health and biomedical citizen science: practices and prospects. JAMIA Open, 3(1): 113–25. DOI: 10.1093/jamiaopen/ooz052
- 5Breck, E, Polyzotis, N, Roy, S, Whang, SE and Zinkevich, M. 2019. Data Validation For Machine Learning. Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA.
- 6Callahan, T, Barnard, J, Helmkamp, L, Maertens, J, Kahn, M. 2017. Reporting data quality assessment results: identifying individual and organizational barriers and solutions. eGEMs, 5(1). DOI: 10.5334/egems.214
- 7Canali, S. 2020. Towards a Contextual Approach to Data Quality. Data. 5(4): 90. DOI: 10.3390/data5040090
- 8Digital Science, Fane, B, Ayris, P, Hahnel, M, Hrynaszkiewicz, G, Baynes, G and others. 2019. The State of Open Data Report 2019. Digital Science. Report. DOI: 10.6084/m9.figshare.9980783
- 9CODATA. 2019. The Beijing Declaration on Research Data. Version: 7 November 2019. Available at:
http://www.codata.org/uploads/Beijing%20Declaration-19-11-07-FINAL.pdf . - 10Coetzee, S. 2018. Implementing Geospatial Data Quality Standards – Motivators and Barriers, 2nd International Workshop on Spatial Data Quality, Valletta, Malta
6–7 February 2018 ,https://eurogeographics.org/wp-content/uploads/2018/06/4-SDQ2018_Coetzee_V1e.pdf . - 11European Commission. 2018.
Turning FAIR into reality – Final Report and Action Plan from the European Commission Expert Group on FAIR data, European Commission : Brussels. DOI: 10.2777/1524 - 12European Commission. 2020.
Recommendations on FAIR Metrics for EOSC, European Commission : Brussels. DOI: 10.2777/70791 - 13European Commission and PwC EU Services. 2018. Cost-benefit analysis for FAIR research data: Cost of not having FAIR research data. Version: March 2018. Available at:
https://op.europa.eu/en/publication-detail/-/publication/d375368c-1a0a-11e9-8d04-01aa75ed71a1/language-en . - 14Eyring, V, Bony, S, Meehl, GA, Senior, CA, Stevens, B, Stouffer, RJ and Taylor, KE. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geoscientific Model Development, 9(5): 1937–1958. DOI: 10.5194/gmd-9-1937-2016
- 15Ferraro, R, Waliser, DE, Gleckler, P, Taylor, KE and Eyring, V. 2015. Evolving Obs4MIPs to Support Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Bull. Amer. Meteor. Soc., 96: ES131–ES133. DOI: 10.1175/BAMS-D-14-00216.1
- 16G20 Leaders. 2016. G20 Leaders’ Communique Hangzhou Summit. Version: 5 September 2016. Available at:
https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967 . - 17Illari, P. 2014.
IQ: Purpose and Dimensions . In The Philosophy of Information Quality; Floridi, L, Illari, P, Eds.; Springer: Berlin, Germany pp. 281–302. DOI: 10.1007/978-3-319-07121-3_14 - 18ISO 19115-1. 2014.
Geographic Information—Metadata – Part 1: Fundamentals . Version: 2014–04. International Organization for Standardization. Geneva, Switzerland. Available at:https://www.iso.org/standard/53798.html . - 19ISO 19157. 2013.
Geographic information—Data quality. Version: 2013–1 . International Organization for Standardization. Geneva, Switzerland. Available at:https://www.iso.org/standard/32575.html . - 20Kahn, MG, Brown, JS, Chun, AT, Davidson, BN, Meeker, D, Ryan, PB, Schilling, LM, Weiskopf, NG, Williams, AE and Zozus, MN. 2015. Transparent reporting of data quality in distributed data networks. Egems, 3(1). DOI: 10.13063/2327-9214.1052
- 21Lacagnina, C, Peng, G, Downs, RR, Ramapriyan, H, Ivanova, I, Moroni, DF, Larnicol, G, Wei, Y, Bastin, L, Ritchey, NA, Wyborn, LA, Shie, C-L, Habermann, T, Ganske, A, Champion, SM, Wu, M, Bastrakova, I, Jones, D and Berg-Cross, G. 2021. Towards Developing Community Guidelines for Sharing and Reusing Quality Information of Earth Science Datasets. EGU General Assembly 2021, Virtual, 19–30 April 2021, EGU21–23. DOI: 10.5194/egusphere-egu21-23
- 22Lee, YW, Strong, DM, Khan, BK and Wang, RY. 2002. AIMQ: a methodology for information quality assessment, Information & Management, 40: 133–146. DOI: 10.1016/S0378-7206(02)00043-5
- 23Leonelli, S. 2017. Global Data Quality Assessment and the Situated Nature of “Best” Research Practices in Biology. Data Science Journal, 16: 32. DOI: 10.5334/dsj-2017-032
- 24High-Level Expert Group on Artificial Intelligence. 2018. Ethics guidelines for trustworthy AI. FUTURIUM – European Commission. Version: December 17, 2018. Available at:
https://ec.europa.eu/futurium/en/ai-alliance-consultation . - 25Lenhardt, W, Ahalt, S, Blanton, B, Christopherson, L and Idaszak, R. 2014. Data management lifecycle and software lifecycle management in the context of conducting science. Journal of Open Research Software, 2(1). DOI: 10.5334/jors.ax
- 26Maskey, M, Alemohammad, H, Murphy, KJ and Ramachandran, R. 2020. Advancing AI for Earth Science: A Data Systems Perspective. EOS, 101. DOI: 10.1029/2020EO151245
- 27Mons, B. 2018.
Data Stewardship for open science: implementing FAIR principles . 1st Edition. Chapman and Hall/CRC Press, Taylor & Francis, New York. 244 pp. Available at:https://www.taylorfrancis.com/books/9781315380711 . DOI: 10.1201/9781315380711-1 - 28Moroni, DF, Ramapriyan, H, Peng, G, Hobbs, J, Goldstein, JC, Downs, RR, Wolfe, R, Shie, C-L, Merchant, CJ, Bourassa, M, Matthews, JL, Cornillon, P, Bastin, L, Kehoe, K, Smith, B, Privette, JL, Subramanian, AC, Brown, O and Ivánová, I. 2019. Understanding the Various Perspectives of Earth Science Observational Data Uncertainty. Figshare. DOI: 10.6084/m9.figshare.10271450
- 29Peng, G. 2018. The state of assessing data stewardship maturity – an overview. Data Science Journal, 17. DOI: 10.5334/dsj-2018-007
- 30Peng, G, Lacagnina, C, Downs, RR, Ivanova, I, Moroni, DF, Ramapriyan, H, Wei, Y and Larnicol, G. 2020a. Laying the Groundwork for Developing International Community Guidelines to Effectively Share and Reuse Digital Data Quality Information – Case Statement, Workshop Summary Report, and Path Forward. Open Science Framework. DOI: 10.31219/osf.io/75b92
- 31Peng, G, Lacagnina, C, Downs, RR, Ramapriyan, H, Ivanova, I, Moroni, DF, Larnicol, G, Wei, Y, Bastin, L, Ritchey, NA, Wyborn, LA, Shie, C-L, Habermann, T, Ganske, A, Champion, SM, Wu, M, Bastrakova, I, Jones, D and Berg-Cross, G. 2020b. Towards Developing Community Guidelines for Sharing and Reuse of Digital Data Quality Information. AGU 2020 Fall Meeting. Abstract 674372. Available at:
https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/674372 . - 32Peng, G, Lacagnina, C, Downs, RR, Ramapriyan, H, Ivanova, I, Moroni, DF, Larnicol, G, Wei, Y, Bastin, L, Ritchey, NA, Wyborn, LA, Shie, C-L, Habermann, T, Ganske, A, Champion, SM, Wu, M, Bastrakova, I, Jones, D, Hou, C-Y and Berg-Cross, G. 2021. An update on a community effort to promote global sharing of dataset quality information. ESIP 2021 Winter Meeting. Virtual.
- 33Press, G. 2016. Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says. Forbes. Version: March 23, 2016. Available at:
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=1ee368c06f63 . - 34Ramapriyan, H, Peng, G, Moroni, D and Shie, C-L. 2017. Ensuring and Improving Information Quality for Earth Science Data and Products. D-Lib Magazine, 23. DOI: 10.1045/july2017-ramapriyan
- 35Redman, CT. 1996.
Data quality of the information age . Artech House, Boston. 303 pp. - 36Shen, Y and Sanghavi, S. 2019. Learning with Bad Training Data via Iterative Trimmed Loss Minimization. Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA.
- 37Stockhause, M, Höck, H, Toussaint, F and Lautenschlager, M. 2012. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data. Geosci. Model Dev. 5. DOI: 10.5194/gmd-5-1023-2012
- 38Stockhause, M and Lautenschlager, M. 2017. CMIP6 Data Citation of Evolving Data. Data Science Journal, 16. DOI: 10.5334/dsj-2017-030
- 39Taylor, KE, Stouffer, RJ and Meehl, GA. 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4): 485–498. DOI: 10.1175/BAMS-D-11-00094.1
- 40Tilmes, C, Privette, AP, Chen, J, Ramachandran, R, Bugbee, KM and Wolfe, RE. 2015a. Linking from observations to data to actionable science in the climate data initiative. Proc. 2015 IEEE Geosci. and Remote Sensing Symposium,
26–31 July 2015 , Milan, Italy. DOI: 10.1109/IGARSS.2015.7326027 - 41Tilmes, C, Wolfe, RE, Duggan, B, Aulenbach, S, Goldstein, JC, Ma, X and Zednik, S. 2015b. Supporting trust with provenance of the findings of the national climate assessment. METHOD 2015: The 4th Intl. Workshop on Methods for Establishing Trust of (Open) Data.
11 Oct. 2015 , Bethlehem, PA, USA. [Available at:http://www.few.vu.nl/~dceolin/method2015/papers/METHOD_2015_paper_2.pdf ]. - 42UN-GGIM. 2018.
Integrated Geospatial Information Framework Part 1 . United Nations Committee of Experts for Global Geospatial Information Management. Available at:https://ggim.un.org/IGIF/part1.cshtml . - 43UN-GGIM. 2019.
Integrated Geospatial Information Framework Part 2 . United Nations Committee of Experts for Global Geospatial Information Management. Available at:https://ggim.un.org/IGIF/part2.cshtml . - 44U.S. Public Law 115-435. 2019. Foundations for Evidence-Based Policymaking Act of 2018. Title II OPEN Government Data Act. Version:
14 January 2019 . 115th U.S. Congress. Available at:https://www.govinfo.gov/content/pkg/PLAW-115publ435/pdf/PLAW-115publ435.pdf . - 45Wang, RY and Strong, DM. 1996. Beyond Accuracy: What Data Quality Means to Consumers. Journal of Management Information Systems, 12(4). DOI: 10.1080/07421222.1996.11518099
- 46Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A and others. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
- 47WMO. 1986.
Guidelines On The Quality Control Of Surface Climatological Data . WMO/TD-No. 111. Geneva, Switzerland: World Meteorological Organization. Available at:https://library.wmo.int/doc_num.php?explnum_id=9205 . - 48WMO. 1991.
Resolution 40 (Cg-XII) – WMO policy and practice for the exchange of meteorological and related data and products including guidelines on relationships in commercial meteorological activities . WMO-No. 827. Geneva, Switzerland: World Meteorological Organization. Available at:https://www.wmo.int/pages/prog/hwrp/documents/wmo_827_enCG-XII-Res40.pdf . - 49WMO. 1999.
Resolution 25 (Cg-XIII) – Exchange of Hydrological Data and Products . Geneva, Switzerland: World Meteorological Organization. Available at:https://www.wmo.int/pages/prog/hwrp/documents/Resolution_25.pdf . - 50WMO. 2004.
Guidelines on Quality Control Procedures for Data from Automatic Weather Stations . Expert Team on Surface Technology and Measurement Techniques, Geneva, Switzerland: World Meteorological Organization. Available at:https://www.wmo.int/pages/prog/www/IMOP/meetings/Surface/ET-STMT1_Geneva2004/Doc6.1(2).pdf . - 51WMO. 2015.
Resolution 60 (Cg-17) – WMO Policy for the International Exchange of Climate Data and Products to Support the Implementation of the Global Framework for Climate Services . Geneva, Switzerland: World Meteorological Organization. Available at:https://library.wmo.int/doc_num.php?explnum_id=4192 . - 52WMO. 2019a.
Origin, impact and aftermath of WMO resolution 40 . WMO-no 1244. Geneva, Switzerland: World Meteorological Organization. Available at:https://library.wmo.int/doc_num.php?explnum_id=10140 . - 53WMO. 2019b.
WMO Guidelines on Surface Station Data Quality Assurance for Climate Applications . Draft: April 5, 2019. Geneva, Switzerland: World Meteorological Organization. Available at:https://www.wmo.int/pages/prog/wcp/wcdmp/hq-gdmfc/documents/QC_QAguidelines-April2019.pdf . - 54WMO. 2019c.
Manual on the high-quality global data management framework for climate. WMO-No . 1238. Geneva, Switzerland: World Meteorological Organization. 43 pp. Available at:https://library.wmo.int/doc_num.php?explnum_id=10197 . - 55WMO. 2019d. WMO data policy statement. Draft 1.0. Study Group on Data Issues and Policies. WMO Data Conference.
16–19 November 2020 , Virtual. Available at:https://meetings.wmo.int/WMO-Data-Conference/Documents/Flyer%20for%20Res.42%2011%2015.pdf . - 56W3C (World Wide Web Consortium). 2020. Data Catalog Vocabulary (DCAT), Version 2. Available at:
https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset .
