References
- 1Allen, B and Mandrak, NE. 2019. Historical changes in the fish communities of the Credit River watershed. Aquatic Ecosystem Health & Management, 22(3): 316–328. DOI: 10.1080/14634988.2019.1672463
- 2Bosilovich, MG, et al. 2013.
On the Reprocessing and Reanalysis of Observations for Climate . In: Asrar, GR and Hurrell, JW (eds.), Climate Science for Serving Society: Research, Modeling and Prediction Priorities. Dordrecht: Springer Netherlands, pp. 51–71. DOI: 10.1007/978-94-007-6692-1_3 - 3Bowser, CJ. 1986.
Historic data sets: lessons from the past, lessons for the future . In: Michener, WK (ed.), Research Data Management in the Ecological Sciences. Columbia: University of South Carolina Press, pp. 155–179. - 4Bradshaw, E, Rickards, L and Aarup, T. 2015. Sea level data archaeology and the Global Sea Level Observing System (GLOSS). GeoResJ. (Rescuing Legacy Data for Future Science), 6: 9–16. DOI: 10.1016/j.grj.2015.02.005
- 5Buma, B, et al. 2019. 100 yr of primary succession highlights stochasticity and competition driving community establishment and stability. Ecology. DOI: 10.1002/ecy.2885
- 6Burgi, M, Steck, C and Bertiller, R. 2010. Evaluating a Forest Conservation Plan with Historical Vegetation Data A Transdisciplinary Case Study from the Swiss Lowlands. Gaia-Ecological Perspectives for Science and Society, 19(3): 204–212. DOI: 10.14512/gaia.19.3.10
- 7Chen, X. 2019. Dynamics of forest composition and growth in Alabama of USA under human activities and climate fluctuation. Journal of Sustainable Forestry. Philadelphia: Taylor & Francis Inc, 38(1): 54–67. DOI: 10.1080/10549811.2018.1497998
- 8Clavero, M and Delibes, M. 2013. Using historical accounts to set conservation baselines: the case of Lynx species in Spain. Biodiversity and Conservation, 22(8): 1691–1702. DOI: 10.1007/s10531-013-0506-4
- 9Coulter, A, et al. 2020. Using harmonized historical catch data to infer the expansion of global tuna fisheries. Fisheries Research, 221: 105379. DOI: 10.1016/j.fishres.2019.105379
- 10Farrell, SL, et al. 2019. Resurfacing Historical Scientific Data: A Case Study Involving Fruit Breeding Data. Journal of eScience Librarianship, 8(2). DOI: 10.7191/jeslib.2019.1171
- 11Griffin, ER. 2015. When are Old Data New Data? GeoResJ, 6: 92–97. DOI: 10.1016/j.grj.2015.02.004
- 12Gross, KL and Pake, CE. 1995. Final report of the Ecological Society of America committee on the future of Long-term Ecological Data (FLED). Washington, DC: Ecological Society of America, p. 122.
- 13Maday, C and Moysan, M. 2014. Records management for scientific data. Archives and Manuscripts, 42(2): 190–192. DOI: 10.1080/01576895.2014.911686
- 14Mayernik, MS, et al. 2020.
Risk Assessment for Scientific Data . Data Science Journal. Ubiquity Press, 19(1): 10. DOI: 10.5334/dsj-2020-010 - 15McGowan, S, et al. 2012. Humans and climate as drivers of algal community change in Windermere since 1850. Freshwater Biology, 57(2): 260–277. DOI: 10.1111/j.1365-2427.2011.02689.x
- 16Wilkinson, M, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
