References
- ANDS. 2011.
Research data management framework: Capability maturity guide . Melbourne: Australian National Data Service. Available athttps://docplayer.net/15343597-Research-data-management-framework-capability-maturity-guide.html . - Bates, JJ and Privette, JL. 2012. A maturity model for assessing the completeness of climate data records, EOS. Transactions of the AGU, 93(44): 441. DOI: 10.1029/2012EO440006
- CCSDS. 2012. (OAIS), Recommended Practice, CCSDS 650.0-M-2 (Magenta Book) Issue 2. Available at
https://public.ccsds.org/pubs/650x0m2.pdf [Last accessed 23 Mai 2018]. - Cox, AM, et al. 2017. Developments in research data management in academic libraries: Towards an understanding of research data service maturity. Journal of the Association for Information Science and Technology, 68(9): 2182–2200. DOI: 10.1002/asi.23781
- Crowston, K and Qin, J. 2012. A capability maturity model for scientific data management: Evidence from the literature. Proceedings of the American Society for Information Science and Technology, 48(1): 1–9. DOI: 10.1002/meet.2011.14504801036
- DKRZ-User Portal. 2019.
FAIRness of DKRZ’s LTA WDCC service . Hamburg, Germany: DKRZ. Available athttps://www.dkrz.de/up/services/data-management/LTA/fairness [Last accessed 18 Aug 2020]. - Höck, H, et al. 2015. Maturity Matrices for Quality of Model- and Observation-Based Data Records in Climate Science.
https://meetingorganizer.copernicus.org/EGU2015/EGU2015-10158-1.pdf . - Höck, H. 2019a.
Technical Report Quality Maturity Matrix (QMM) Checklist . Hamburg, Germany: WDCC. DOI: 10.2312/WDCC/TR_QMM_Checklist. - Höck, H. 2019b.
QC Checklist QMM Level 4 and 5 with Protocols at DKRZ-LTA . Hamburg, Germany: WDCC. DOI: 10.2312/WDCC/TR_QMM_Checkl_Levels_4-5_Prots. - ISO 19157:2013-12. Geographic information – Data quality (ISO 19157:2013(E)).
- Kenney, AR and McGovern, NY. 2003.
The five organizational stages of digital preservation . In Hodges, P, Sandler, M, Bonn, M and Wilkin, JP. (eds.), Digital libraries: A vision for the 21st century. Ann Arbor, MI: University of Michigan Scholarly Publishing Office. Available athttp://hdl.handle.net/2027/spo.bbv9812.0001.001 . - Lyon, L, et al. 2012. Developing a community capability model framework for data-intensive research. In iPres 2012. Proceedings of the Ninth International Conference on the Preservation of Digital Objects (pp. 9–16). Available at:
https://ipres.ischool.utoronto.ca/sites/ipres.ischool.utoronto.ca/files/iPres%202012%20Conference%20Proceedings%20Final.pdf [Last accessed 15 Aug 2020]. - Mons, B, et al. 2017. Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. DOI: 10.3233/ISU-170824
- Paulk, MC, et al. 1993. Capability maturity model, Version 1.1. IEEE Software, 10(4): 18–27. DOI: 10.1109/52.219617
- Peng, G. 2018. The state of assessing data stewardship maturity – An overview. Data Science Journal, 17: Article 7. DOI: 10.5334/dsj-2018-007
- Peng, G, et al. 2015. A unified framework for measuring stewardship practices applied to digital environmental datasets. Data Science Journal, 13: 231–253. DOI: 10.2481/dsj.14-049
- Peng, G, et al. 2016. Scientific stewardship in the open data and big data era — Roles and responsibilities of stewards and other major product stakeholders. D-Lib Magazine, 22(5/6). DOI: 10.1045/may2016-peng
- Treloar, AE and Harboe-Ree, C. 2008. Data management and the curation continuum: how the Monash experience is informing repository relationships. Available at:
https://bridges.monash.edu/articles/Data_management_and_the_curation_continuum_how_the_Monash_experience_is_informing_repository_relationships/5627773 [Last accessed 18 Aug 2020]. - Wilkinson, M, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 3:
160018 . DOI: 10.1038/sdata.2016.18
