Have a personal or library account? Click to login
Fitness for Use of Data Objects Described with Quality Maturity Matrix at Different Phases of Data Production Cover

Fitness for Use of Data Objects Described with Quality Maturity Matrix at Different Phases of Data Production

Open Access
|Nov 2020

References

  1. ANDS. 2011. Research data management framework: Capability maturity guide. Melbourne: Australian National Data Service. Available at https://docplayer.net/15343597-Research-data-management-framework-capability-maturity-guide.html.
  2. Bates, JJ and Privette, JL. 2012. A maturity model for assessing the completeness of climate data records, EOS. Transactions of the AGU, 93(44): 441. DOI: 10.1029/2012EO440006
  3. CCSDS. 2012. (OAIS), Recommended Practice, CCSDS 650.0-M-2 (Magenta Book) Issue 2. Available at https://public.ccsds.org/pubs/650x0m2.pdf [Last accessed 23 Mai 2018].
  4. Cox, AM, et al. 2017. Developments in research data management in academic libraries: Towards an understanding of research data service maturity. Journal of the Association for Information Science and Technology, 68(9): 21822200. DOI: 10.1002/asi.23781
  5. Crowston, K and Qin, J. 2012. A capability maturity model for scientific data management: Evidence from the literature. Proceedings of the American Society for Information Science and Technology, 48(1): 19. DOI: 10.1002/meet.2011.14504801036
  6. DKRZ-User Portal. 2019. FAIRness of DKRZ’s LTA WDCC service. Hamburg, Germany: DKRZ. Available at https://www.dkrz.de/up/services/data-management/LTA/fairness [Last accessed 18 Aug 2020].
  7. Höck, H, et al. 2015. Maturity Matrices for Quality of Model- and Observation-Based Data Records in Climate Science. https://meetingorganizer.copernicus.org/EGU2015/EGU2015-10158-1.pdf.
  8. Höck, H. 2019a. Technical Report Quality Maturity Matrix (QMM) Checklist. Hamburg, Germany: WDCC. DOI: 10.2312/WDCC/TR_QMM_Checklist.
  9. Höck, H. 2019b. QC Checklist QMM Level 4 and 5 with Protocols at DKRZ-LTA. Hamburg, Germany: WDCC. DOI: 10.2312/WDCC/TR_QMM_Checkl_Levels_4-5_Prots.
  10. ISO 19157:2013-12. Geographic information – Data quality (ISO 19157:2013(E)).
  11. Kenney, AR and McGovern, NY. 2003. The five organizational stages of digital preservation. In Hodges, P, Sandler, M, Bonn, M and Wilkin, JP. (eds.), Digital libraries: A vision for the 21st century. Ann Arbor, MI: University of Michigan Scholarly Publishing Office. Available at http://hdl.handle.net/2027/spo.bbv9812.0001.001.
  12. Lyon, L, et al. 2012. Developing a community capability model framework for data-intensive research. In iPres 2012. Proceedings of the Ninth International Conference on the Preservation of Digital Objects (pp. 916). Available at: https://ipres.ischool.utoronto.ca/sites/ipres.ischool.utoronto.ca/files/iPres%202012%20Conference%20Proceedings%20Final.pdf [Last accessed 15 Aug 2020].
  13. Mons, B, et al. 2017. Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. DOI: 10.3233/ISU-170824
  14. Paulk, MC, et al. 1993. Capability maturity model, Version 1.1. IEEE Software, 10(4): 1827. DOI: 10.1109/52.219617
  15. Peng, G. 2018. The state of assessing data stewardship maturity – An overview. Data Science Journal, 17: Article 7. DOI: 10.5334/dsj-2018-007
  16. Peng, G, et al. 2015. A unified framework for measuring stewardship practices applied to digital environmental datasets. Data Science Journal, 13: 231253. DOI: 10.2481/dsj.14-049
  17. Peng, G, et al. 2016. Scientific stewardship in the open data and big data era — Roles and responsibilities of stewards and other major product stakeholders. D-Lib Magazine, 22(5/6). DOI: 10.1045/may2016-peng
  18. Treloar, AE and Harboe-Ree, C. 2008. Data management and the curation continuum: how the Monash experience is informing repository relationships. Available at: https://bridges.monash.edu/articles/Data_management_and_the_curation_continuum_how_the_Monash_experience_is_informing_repository_relationships/5627773 [Last accessed 18 Aug 2020].
  19. Wilkinson, M, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 3: 160018. DOI: 10.1038/sdata.2016.18
Language: English
Submitted on: Feb 20, 2020
|
Accepted on: Nov 3, 2020
|
Published on: Nov 17, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Heinke Höck, Frank Toussaint, Hannes Thiemann, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.