Have a personal or library account? Click to login
Data Warehouse Hybrid Modeling Methodology Cover

Figures & Tables

Table 1

Steps of the six methodologies.

GrHyMMUMLDWMDBEPDMGRAnDGQMVMQD*
Requirement Analysisgoals, tasksgoals, tasksqueries in SQLqueries in SQLgoals, decisionsgoals, questions, metricsvisualized questions, metrics, dimensionality
Minimal Granularityminimally detailed metrics
Ideal Schemaideal facts, ideal dimensionsideal facts, ideal dimensions
Source Analysisindependent, source system schemaindependent, CWMindependentindependentindependentindependent, potential schemapotential transactions, attributes, partly dependent,
Integrationpotential schema vs.ideal schemapotential schema vs.ideal schema
ReconciliationDB integrityconsistent UML multidimensional schemaDB integrity
Multidimensional Modelingfacts, attribute tree for facts, remodelingcubes, dimensions, hierarchies, measuresdimensions and facts from tablesDate dimension and Attribute dimensions for factsMeERDerived from requirement analysis schemasMeER
Schema SelectionMeER related to questions
Manual Refinementmodified automatically generated schema
dsj-19-898-g1.png
Figure 1

Framework of VMQD.

Table 2

Management question analysis.

IndicatorI{af[,af]}{u[,u]}the indicator I to be produced with u unit(s) in the upper right index and af aggregate function(s) in the bottom right index,
unit(s)
aggregate function(s)
visualization(vt[{ss}])vthe v visualization with the type vt (table, line diagram, bar graph, etc. …) and optional s slicers (values can be D{a} dimensional attribute, D{v} subset of concrete values, or a D{a} dimensional attribute in the d detail of another I indicator on the same dashboard)
slicer(s)
detail(s)[(D{a}[D{a}]){d}]d details with D{a} dimensional attribue(s), with optional Σ{a} aggregation. d values e.g.: row, column, category, y indicator
Table 3

Optimizations’ notations.

(I1I2)(D{dk})I1(D{dk})×I2(D{dk})Combining indicators I1 and I2 with the same dimensionality. We create the Descartes multiplier of the two indicators.
dsj-19-898-g6.pngThe value of the indicator I can be obtained by summing through dimension D (roll up) with the aggregate function in the lower left index of I. Calculating the aggregation from D{dk} at the bottom of the Summa symbol to the level at the top of the Summa sign (all or D{dhk} hierarchy level, leaving the original key. This is referred to as dsj-19-898-g7.png.
I1(A{dk})I2(A{dk},B{dk})(I1(A{dk})I2(A{dk},B{dk}))(I1I2)(A{dk},B{dk})A and B are dimensions of indicators I1 and I2 and I1 is proper subset of I2.
Table 4

Data loadings’ transformation notations.

dsj-19-898-g8.pngThe value of the indicator I can be obtained by summing through D dimension (roll up) with the aggregate function in the lower left index of I. This is an aggregation is from D{dk} at the bottom of the Summa symbol to the level at the top of the Summa Sign (all or D{dhk} hierarchy level, leaving the original key. This is referred to as dsj-19-898-g7.png.
D(D{dk}[,D{a}][,D{i}])=D(D{dk}D{dk}[,D{a}][,Daf{i}])Deduplicate the values of D dimensions’ D{dk}. key. Summarize the indicator with the af aggregate function in the lower left index, while leaving the first element of attribute values.
I(D{dk})=I()×D{dk}Expand the dimensionality of indicator I. The Descartes multiplier of the original indicator with the dimension to be expanded.
dsj-19-898-g9.pngPivoting I indicator values through D{a} dimensional attribute. We create several new indicators corresponding to the occurrence values of the attribute.
(I1I2)(D{dk})=I1(D{dk})×I2(D{dk})Combining I1 I2 indicators with the same dimensionality. We create the Descartes multiplier of the two indicators.
dsj-19-898-g10.pngUnpivoting I1 I2 indicators with the same dimensionality into V indicator values and A attribute set with the indicators’ name
I=D{a}allID{a}The sum of pivoted ID{a} indicator values along the occurrence values of D{a} attribute.
Table 5

Question1 analysis.

Indicatorhow many days completed (activity)I{af[,af]}{u[,u]}Activity{day}
unit(s)day
aggregate function(s)how many (sum)
visualizationtable(vt[{ss}])v(tableD{March})v
slicer(s)March
detail(s)student[(D{a}[D{a}]){d}](P{stud})row
daily step category[(D{a}[D{a}]){d}](I{dsc})col

[i] Activity{day}(tableD{March})v(P{nid})row(I{dsc})col

Table 6

Question2 analysis.

Indicatoraveragely completed daysI{af[,af]}{u[,u]}Activityaverage{day}
unit(s)day
aggregate function(s)average
visualizationtable(vt[{ss}])v(tableD{March})v
slicer(s)March
detail(s)gender[(D{a}[D{a}]){f}](P{gender})row
daily step category[(D{a}[D{a}]){f}](I{dsc})col

[i] Activityaverage{day}(tableD{March})v(P{gender})row(I{dsc})col

Table 7

Question3 analysis.

IndicatorDaily stepsI{af[,af]}{u[,u]}DailyStepsaverage{steps}
unit(s)steps
aggregate function(s)average
visualizationradar chart(vt[{ss}])v(radar chartD{March})v
slicer(s)March
detail(s)day of the week[(D{a}[D{a}]){d}](D{DoW})cat
men, women, all[(D{a}[D{a}]){d}](P{gender})y

[i] DailyStepsaverage{steps}(radar chartD{March})v(D{weekday})cat(P{gender})y

dsj-19-898-g11.png
dsj-19-898-g12.png
Table 8

10-minute normalized steps’ property mapping.

OLTP system (extract)transformOLAP system (load)
S{10mNS}=>10minNS{step}
S{DK}=>D{DK}
S{TK}=>T{TK}
S{PK}=>P{TK}

[i] S(S{10mNS},S{date},S{TK},S{NID}) etl 10mNS{step}(P{pk},D{dk},T{TK})

Table 9

Person dimension’s property mapping.

OLTP system (extract)transformOLAP system (load)
P{PK}=>P{PK}
P{GenderEn}=>P{gender}

[i] dimPerson(P{pk},P{GenderEn})etl dimPerson(P{pk},P{gender})

Table 10

Date dimension’s property mapping.

OLTP system (extract)transformOLAP system (load)
D{DK}=>D{DK}
left(D{DK}, 6)D{MK}
D{DOW}D{DoW}&“–”&D{weekdayEn}D{weekday}
D{weekdayEn}

[i] dimDate(D{dk},D{DoW},D{weekdayEn}) etl dimDate(D{dk},D{weekday},D{MK})

Table 11

Month dimension-hierarchy’s property mapping.

OLTP system (extract)transformOLAP system (load)
D{DK}left(D{DK}, 6)DM{MK}
D{monthStrEn}=>DM{month}

[i] dimDate(D{dk},D{monthStrEn})etl dimDateMonth(DM{MK},DM{month})

Table 12

Walk intensity dimension’s property mapping.

OLTP system (extract)transformOLAP system (load)
I{IK}=>I{IK}
I{IK}I{IK}&“–”& D{sscEn}I{dsc}
D{sscEn}

[i] dimIntensity(I{IK},I{sscEn})etl dimIntensity(I{IK},I{dsc})

dsj-19-898-g13.png
dsj-19-898-g14.png
dsj-19-898-g15.png
dsj-19-898-g16.png
dsj-19-898-g2.png
Figure 2

Galaxy schema of the optimal cube.

dsj-19-898-g3.png
Figure 3

Table visualization of question1.

dsj-19-898-g4.png
Figure 4

Table visualization of question2.

dsj-19-898-g5.png
Figure 5

Radar chart visualization of question3.

Language: English
Submitted on: Oct 8, 2018
|
Accepted on: Apr 27, 2020
|
Published on: Oct 13, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Viktor László Takács, Katalin Bubnó, Gergely Gábor Ráthonyi, Éva Bácsné Bába, Róbert Szilágyi, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.