Have a personal or library account? Click to login

References

  1. Allen, L, Stewart, C and Wright, S. 2017. Strategic open data preservation. College & Research Libraries News, 78(9). https://crln.acrl.org/index.php/crlnews/article/view/16771/18312. DOI: 10.5860/crln.78.9.482
  2. Anderson, WL, Faundeen, JL, Greenberg, J and Taylor, F. 2011. Metadata for data rescue and data at risk. In: Conference on Ensuring Long-Term Preservation in Adding Value to Scientific and Technical Data. http://hdl.handle.net/2152/20056
  3. Aven, T. 2016. Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1): 113. DOI: 10.1016/j.ejor.2015.12.023
  4. Becker, C, Maemura, E and Moles, N. 2020. The design and use of assessment frameworks in digital curation. Journal of the Association for Information Science and Technology (JASIST), 71(1): 5568. DOI: 10.1002/asi.24209
  5. Cervone, HF. 2006. Project risk management. OCLC Systems & Services: International Digital Library Perspectives, 22(4): 25662. DOI: 10.1108/10650750610706970
  6. Charifson, DM, Huth, PC, Thompson, JE, Angyal, RK, Flaherty, MJ and Richardson, DC. 2015. History of Fish Presence and Absence Following Lake Acidification and Recovery in Lake Minnewaska, Shawangunk Ridge, NY. Northeastern Naturalist, 22: 762781. DOI: 10.1656/045.022.0411
  7. Chodacki, J. 2018. Data Mirror: Complementing data producers. Against the Grain, 29: 35. https://escholarship.org/uc/item/2n1715ff. DOI: 10.7771/2380-176X.7877
  8. CoreTrustSeal Data Repository Certification. 2018. https://www.coretrustseal.org/.
  9. Cornelius, KB and Pasquetto, IV. 2018. “What data?” Records and data policy coordination during presidential transitions. In: Transforming Digital Worlds, 155163. Springer International Publishing. DOI: 10.1007/978-3-319-78105-1_20
  10. Cook, BI, Cook, ER, Anchukaitis, KJ, Huth, PC, Thompson, JE and Smiley, SF. 2009. A Homogeneous Record (1896–2006) of Daily Weather and Climate at Mohonk Lake, New York. Journal of Applied Meteorology and Climatology, 49: 544555. DOI: 10.1175/2009JAMC2221.1
  11. Cook, BI, Cook, ER, Huth, PC, Thompson, JE, Forster, A and Smiley, D. 2008. A cross-taxa phenological dataset from Mohonk Lake, NY and its relationship to climate. International Journal of Climatology, 28: 13691383. DOI: 10.1002/joc.1629
  12. Data Rescue Interest Group. 2018. Research Data Alliance. https://rd-alliance.org/groups/data-rescue.html.
  13. Dennis, B. 2016. Scientists are frantically copying U.S. climate data, fearing it might vanish under Trump. The Washington Post, Dec. 13, 2016. https://www.washingtonpost.com/news/energy-environment/wp/2016/12/13/scientists-are-frantically-copying-u-s-climate-data-fearing-it-might-vanish-under-trump/.
  14. Donaldson, DR, Dillo, I, Downs, R and Ramdeen, S. 2017. The perceived value of acquiring Data Seals of Approval. International Journal of Digital Curation, 12(1). DOI: 10.2218/ijdc.v12i1.481
  15. Downs, RR and Chen, RS. 2017. Curation of scientific data at risk of loss: Data rescue and dissemination. In: Johnston, L (ed.), Curating Research Data. Volume One, Practical Strategies for Your Digital Repository. Association of College and Research Libraries. DOI: 10.7916/D8W09BMQ
  16. Faundeen, J. 2017. Developing criteria to establish trusted digital repositories. Data Science Journal, 16: 22. DOI: 10.5334/dsj-2017-022
  17. Gallaher, D, Campbell, GG, Meier, W, Moses, J and Wingo, D. 2015. The process of bringing dark data to light: The rescue of the early Nimbus satellite data. GeoResJ, 6: 124134. DOI: 10.1016/j.grj.2015.02.013
  18. Graf, R, Ryan, HM, Houzanme, T and Gordea, S. 2017. A decision support system to facilitate file format selection for digital preservation. Libellarium: Journal for the Research of Writing, Books, and Cultural Heritage Institutions, 9(2). DOI: 10.15291/libellarium.v9i2.274
  19. Griffin, RE. 2015. When are old data new data? GeoResJ, 6: 9297. DOI: 10.1016/j.grj.2015.02.004
  20. Guidelines to the Rescue of Data At Risk. 2017. Research Data Alliance. https://www.rd-alliance.org/guidelines-rescue-data-risk.
  21. Hsu, L, Lehnert, KA, Goodwillie, A, Delano, JW, Gill, JB, Tivey, MA, Ferrini, VL, Carbotte, SM and Arko, RA. 2015. Rescue of long-tail data from the ocean bottom to the Moon: IEDA Data Rescue Mini-Awards. GeoResJ, 6: 108114. DOI: 10.1016/j.grj.2015.02.012
  22. [ISO] International Organization for Standardization. 2012a. ISO 14721:2012 (CCSDS 650.0-M-2): Space data and information transfer systems — Open Archival Information System (OAIS) — Reference model. https://www.iso.org/standard/57284.html.
  23. [ISO] International Organization for Standardization. 2012b. ISO 16363:2012 (CCSDS 652.0-R-1): Space data and information transfer systems — Audit and certification of trustworthy digital repositories. https://www.iso.org/standard/56510.html.
  24. Janz, M. 2018. Maintaining access to public data: Lessons from Data Refuge. Against the Grain, 29: 3033. DOI: 10.31229/osf.io/yavzh
  25. Knapp, KR, Bates, JJ and Barkstrom, B. 2007. Scientific data stewardship: Lessons learned from a satellite–data rescue effort. Bulletin of the American Meteorological Society, 88(9): 13591362. DOI: 10.1175/BAMS-88-9-1359
  26. Lamdan, S. 2018. Lessons from Datarescue: The limitations of grassroots climate change data preservation and the need for federal records law reform. University of Pennsylvania Law Review Online, 166(1): Article 12. https://scholarship.law.upenn.edu/penn_law_review_online/vol166/iss1/12.
  27. Levitus, S. 2012. The UNESCO-IOC-IODE “Global Oceanographic Data Archeology and Rescue” (GODAR) Project and “World Ocean Database” Project. Data Science Journal, 11: 4671. DOI: 10.2481/dsj.012-014
  28. Maemura, E, Moles, N and Becker, C. 2017. Organizational assessment frameworks for digital preservation: A literature review and mapping. Journal of the Association for Information Science and Technology, 68(7): 16191637. DOI: 10.1002/asi.23807
  29. Mayernik, MS, Downs, RR, Duerr, R, Hou, C-Y, Meyers, N, Ritchey, N, Thomer, A and Yarmey, L. 2017. Stronger together: The case for cross-sector collaboration in identifying and preserving at-risk data. Figshare. DOI: 10.6084/m9.figshare.4816474.v1
  30. Mayernik, MS, Huddle, J, Hou, C-Y and Phillips, J. 2018. Modernizing library metadata for historical weather and climate data collections. Journal of Library Metadata, 17(3/4): 219239. DOI: 10.1080/19386389.2018.1440927
  31. McGovern, NY. 2017. Data rescue. ACM SIGCAS Computers and Society, 47(2): 1926. DOI: 10.1145/3112644.3112648
  32. Michener, WK, et al. 1997. Nongeospatial metadata for the ecological sciences. Ecological Applications, 7(1): 330342. DOI: 10.1890/1051-0761(1997)007[0330:NMFTES]2.0.CO;2
  33. Mohonk Preserve, Belardo, C, Feldsine, N, Forester, A, Huth, P, Long, E, Morgan, V, Napoli, M, Pierce, E, Richardson, D, Smiley, D, Smiley, S and Thompson, J. 2018a. History of Acid Precipitation on the Shawangunk Ridge: Mohonk Preserve Precipitation Depths and pH, 1976 to Present. Environmental Data Initiative. DOI: 10.6073/pasta/734ea90749e78613452eacec489f419c
  34. Mohonk Preserve, Forester, A, Huth, P, Long, E, Morgan, V, Napoli, M, Pierce, E, Smiley, D, Smiley, S and Thompson, J. 2018b. Mohonk Preserve Ground Water Springs Data, 1991 to Present. Environmental Data Initiative. DOI: 10.6073/pasta/928feed7ee748509ab065de7e3791966
  35. Mohonk Preserve, Feldsine, N, Forester, A, Garretson, A, Huth, P, Long, E, Napoli, M, Pierce, E, Smiley, D, Smiley, S and Thompson, J. 2019. Mohonk Preserve Amphibian and Water Quality Monitoring Dataset at 11 Vernal Pools from 1931–Present. Environmental Data Initiative. DOI: 10.6073/pasta/864aea25998b73c5d1a5b5f36cb6583e
  36. National Research Council. 1983. Risk Assessment in the Federal Government: Managing the Process. Washington, DC: The National Academies Press. DOI: 10.17226/366
  37. NIWA. 2019. The week it snowed everywhere. NIWA Media Release, Nov. 21, 2019. https://niwa.co.nz/news/the-week-it-snowed-everywhere.
  38. Peng, G. 2018. The state of assessing data stewardship maturity – An overview. Data Science Journal, 17: 7. DOI: 10.5334/dsj-2018-007
  39. Peng, G, Milan, A, Ritchey, NA, Partee, RP, II, Zinn, S, McQuinn, E, Casey, KS, Lemieux, P, III, Ionin, R, Jones, P, Jakositz, A and Collins, D. 2019. Practical application of a data stewardship maturity matrix for the NOAA OneStop project. Data Science Journal, 18: 41. DOI: 10.5334/dsj-2019-041
  40. Peng, G, Privette, JL, Kearns, EJ, Ritchey, NA and Ansari, S. 2015. A unified framework for measuring stewardship practices applied to digital environmental datasets. Data Science Journal, 13: 231253. DOI: 10.2481/dsj.14-049
  41. Pienta, AM and Lyle, J. 2018. Retirement in the 1950s: Rebuilding a longitudinal research database. IASSIST Quarterly, 42(1). DOI: 10.29173/iq19
  42. Poli, P, Dee, DP, Saunders, R, John, VO, Rayer, P, Schulz, J, Bojinski, S, et al. 2017. Recent advances in satellite data rescue. Bulletin of the American Meteorological Society, 98(7): 14711484. DOI: 10.1175/BAMS-D-15-00194.1
  43. Ramapriyan, HK. 2017. NASA’s EOSDIS: Trust and Certification. Presented at: 2017 ESIP Summer Meeting, Bloomington, IN. Figshare. DOI: 10.6084/m9.figshare.5258047.v1
  44. Richardson, DC, Charifson, DM, Stanson, VJ, Stern, EM, Thompson, JE and Townley, LA. 2016. Reconstructing a trophic cascade following unintentional introduction of golden shiner to Lake Minnewaska, New York, USA. Inland Waters, 6: 2933. DOI: 10.5268/IW-6.1.915
  45. Ryan, H. 2014. Occam’s razor and file format endangerment factors. In: Proceedings of the 11th International Conference on Digital Preservation (iPres), October 6–10, 2014, Melbourne, Australia, 179188. https://www.nla.gov.au/sites/default/files/ipres2014-proceedings-version_1.pdf.
  46. Slovic, P. 1999. Trust, emotion, sex, politics, and science: Surveying the risk-assessment battlefield. Risk Analysis, 19(4): 689701. DOI: 10.1023/A:1007041821623
  47. Thompson, CA, Robertson, WD and Greenberg, J. 2014. Where have all the scientific data gone? LIS perspective on the data-at-risk predicament. College & Research Libraries, 75(6): 842861. DOI: 10.5860/crl.75.6.842
  48. Usability.gov. 2019. Card Sorting. US Department of Health & Human Services. https://www.usability.gov/how-to-and-tools/methods/card-sorting.html.
  49. USGS. 2019. USGS Data at Risk: Expanding Legacy Data Inventory and Preservation Strategies. US Geological Survey. https://www.sciencebase.gov/catalog/item/58b5ddc3e4b01ccd54fde3fa.
  50. Varinsky, D. 2017. Scientists across the US are scrambling to save government research in ‘Data Rescue’ events. Business Insider, Feb. 11, 2017. http://www.businessinsider.com/data-rescue-government-data-preservation-efforts-2017-2.
  51. Yakel, E, Faniel, I, Kriesberg, A and Yoon, A. 2013. Trust in digital repositories. International Journal of Digital Curation, 8(1). DOI: 10.2218/ijdc.v8i1.251
  52. Yoon, A. 2017. Data reusers’ trust development. Journal of the Association for Information Science and Technology, 68(4): 946956. DOI: 10.1002/asi.23730
  53. Zimmerman, DE and Akerelrea, C. 2002. A group card sorting methodology for developing informational web sites. In: Proceedings IEEE International Professional Communication Conference, 437445. IEEE. DOI: 10.1109/IPCC.2002.1049127
Language: English
Submitted on: Dec 19, 2019
|
Accepted on: Feb 2, 2020
|
Published on: Mar 12, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Matthew S. Mayernik, Kelsey Breseman, Robert R. Downs, Ruth Duerr, Alexis Garretson, Chung-Yi (Sophie) Hou, Environmental Data Governance Initiative (EDGI) and Earth Science Information Partners (ESIP) Data Stewardship Committee, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.