Have a personal or library account? Click to login
Application of Natural Language Processing Algorithms to the Task of Automatic Classification of Russian Scientific Texts Cover

Application of Natural Language Processing Algorithms to the Task of Automatic Classification of Russian Scientific Texts

Open Access
|Aug 2019

References

  1. Abuhaiba, ISI and Dawoud, HM. 2017. Combining Different Approaches to Improve Arabic Text Documents Classification. International Journal of Intelligent Systems and Applications, 9(4): 3952. DOI: 10.5815/ijisa.2017.04.05
  2. Automatic Content Classification with ABBYY Solutions. 2019. Available at https://www.abbyy.com/solutions/document-classification/ [Last accessed 28.08.2018].
  3. Bourgonje, P, Moreno-Schneider, J, Srivastava, A and Rehm, G. 2018. Automatic Classification of Abusive Language and Personal Attacks in Various Forms of Online Communication. 180191. DOI: 10.1007/978-3-319-73706-5_15
  4. Chen, G, Ye, D, Xing, Z, Chen, J and Cambria, E. 2017. Ensemble application of convolutional and recurrent neural networks for multi-label text categorization. B: 2017 International Joint Conference on Neural Networks (IJCNN), 23772383. IEEE. DOI: 10.1109/IJCNN.2017.7966144
  5. Clark, J, Koprinska, I and Poon, J. 2003. A neural network based approach to automated e-mail classification. B: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), 702705. IEEE Comput. Soc. DOI: 10.1109/WI.2003.1241300
  6. Dimov, D, Low, F, Ibrakhimov, M, Stulina, G and Conrad, C. 2017. SAR and optical time series for crop classification. B: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 811814. IEEE. DOI: 10.1109/IGARSS.2017.8127076
  7. Du, J. 2017. Automatic text classification algorithm based on Gauss improved convolutional neural network. Journal of Computational Science, 21: 195200. DOI: 10.1016/j.jocs.2017.06.010
  8. Feng, K-Y, Cai, Y-D and Chou, K-C. 2005. Boosting classifier for predicting protein domain structural class. Biochemical and Biophysical Research Communications, 334(1): 213217. DOI: 10.1016/j.bbrc.2005.06.075
  9. gensim: models.word2vec – Word2vec embeddings. 2019. Available at https://radimrehurek.com/gensim/models/word2vec [Last accessed 28.08.2018].
  10. Géron, A. 2018. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems. 1-e and. O’Reilly.
  11. Goncalves, T and Quaresma, P. 2018. Evaluating preprocessing techniques in a Text Classification problem.
  12. Joulin, A, Grave, E, Bojanowski, P and Mikolov, T. 2016. Bag of Tricks for Efficient Text Classification. Available at http://arxiv.org/abs/1607.01759. DOI: 10.18653/v1/E17-2068
  13. Klyshinsky, ES and Kochetkova, NA. 2015. Method of extracting technical terms using the measure of strangeness. Novye Informacionnye Tekhnologii v Avtomatizirovannyh Sistemah, 17: 365370.
  14. Korenius, T, Laurikkala, J, Järvelin, K and Juhola, M. 2004. Stemming and lemmatization in the clustering of finnish text documents. B: Proceedings of the Thirteenth ACM conference on Information and knowledge management – CIKM ’04, 625. New York, USA: ACM Press. DOI: 10.1145/1031171.1031285
  15. Kusner, M, Sun, Y, Kolkin, N and Weinberger, K. 2015. From Word Embeddings To Document Distances. Bach, F and Blei, D (ed.), B: Proceedings of the 32nd International Conference on Machine Learning, 957966. Lille, France: PMLR. Available at http://proceedings.mlr.press/v37/kusnerb15.html.
  16. Lapach, SN and Radchenko, SG. 2012. The main problems of constructing regression models. Matematicheskie Mashiny I Sistemy, 1(4): 125133.
  17. Lex, E, Seifert, C, Granitzer, M and Juffinger, A. 2010. Efficient Cross-Domain Classification of Weblogs. International Journal of Intelligent Computing Research, 1(3): 5562. DOI: 10.20533/ijicr.2042.4655.2010.0007
  18. Liu, Y, Bi, J-W and Fan, Z-P. 2017. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Information Sciences, 394–395: 3852. DOI: 10.1016/j.ins.2017.02.016
  19. LPU download page. 2019. Available at https://www.cs.uic.edu/~liub/LPU/LPU-download.html [Last accessed 28.08.2018].
  20. Luo, Y, Ye, W, Zhao, X, Pan, X and Cao, Y. 2017. Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm. Sensors, 17(10): 2376. DOI: 10.3390/s17102376
  21. Raju, MK, Subrahmanian, ST and Sivakumar, T. 2017. A Comparative Survey on Different Text Categorization Techniques. Journal of Computer Science and Engineering, 5(4): 16121618.
  22. Sammouda, R. 2017. A Comparative Study of Effective Supervised Learning Methods on Arabic Text Classification, 17(12): 130133.
  23. Scherer, D, Müller, A and Behnke, S. 2010. Evaluation of pooling operations in convolutional architectures for object recognition. B: Proceeding ICANN’10 Proceedings of the 20th international conference on Artificial neural networks: Part III, 92101. DOI: 10.1007/978-3-642-15825-4_10
  24. Semberecki, P and Maciejewski, H. 2017. Deep Learning methods for Subject Text Classification of Articles. cc. 357360. DOI: 10.15439/2017F414
  25. Sokolova, M and Bobicev, V. 2009. Classification of Emotion Words in Russian and Romanian Languages, 416420.
  26. Sun, Y, Kamel, MS, Wong, AKC and Wang, Y. 2007. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12): 33583378. DOI: 10.1016/j.patcog.2007.04.009
  27. Tang, D, Qin, B and Liu, T. 2015. Document modeling with gated recurrent neural network for sentiment classification. B: Proceedings of the 2015 conference on empirical methods in natural language processing. cc. 14221432. DOI: 10.18653/v1/D15-1167
  28. Toloşi, L and Lengauer, T. 2011. Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics, 27(14): 19861994. DOI: 10.1093/bioinformatics/btr300
  29. Toman, M, Tesar, R and Jezek, K. 2006. Influence of word normalization on text classification. B: Proceedings of InSciT. cc. 354358. Available at http://www.kiv.zcu.cz/research/groups/text/publications/inscit20060710.pdf.
  30. Uysal, AK and Gunal, S. 2014. The impact of preprocessing on text classification. Information Processing & Management, 50(1): 104112. DOI: 10.1016/j.ipm.2013.08.006
  31. Viniti.ru. 2019. Available at http://www.viniti.ru/ [Last accessed 01.01.2019].
  32. Vorobyov, NV and Puchkov, EV. 2017. Text classification using convolutional neural network. Yuniy Issledovatel Dona, 9(6): 27.
  33. Wang, X, Jiang, W and Luo, Z. 2016. Combination of Convolutional and Recurrent Neural Network for Sentiment Analysis of Short Texts. B: Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee. cc. 24282437. Available at https://www.aclweb.org/anthology/C16-1229
  34. Wang, Y, Zhou, Z, Jin, S, Liu, D and Lu, M. 2017. Comparisons and Selections of Features and Classifiers for Short Text Classification. IOP Conference Series: Materials Science and Engineering, 261: 012018. DOI: 10.1088/1757-899X/261/1/012018
  35. Watson Natural Language Classifier. 2019. Available at https://www.ibm.com/watson/services/natural-language-classifier/ [Last accessed 28.08.2018].
  36. Wu, L, Yen, IE-H, Xu, K, Xu, F, Balakrishnan, A, Chen, P-Y, Ravikumar, P and Witbrock, MJ. 2018. Word Mover’s Embedding: From Word2Vec to Document Embedding. CoRR, abs/1811.01713. Available at http://arxiv.org/abs/1811.01713. DOI: 10.18653/v1/D18-1482
  37. Xu, B and Zhang, Y. 2011. A new SVM Chinese text of classification algorithm based on the semantic kernel. B: 2011 International Conference on Multimedia Technology, 28572860. IEEE. DOI: 10.1109/ICMT.2011.6003097
  38. Yussupova, NI, Bogdanova, D and Boyko, MN. 2012. Applying of Sentiment Analysis for Texts in Russian Based on Machine Learning Approach.
Language: English
Submitted on: Jan 14, 2019
|
Accepted on: Jul 23, 2019
|
Published on: Aug 12, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Aleksandr Romanov, Konstantin Lomotin, Ekaterina Kozlova, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.