References
- Abuhaiba, ISI and Dawoud, HM. 2017. Combining Different Approaches to Improve Arabic Text Documents Classification. International Journal of Intelligent Systems and Applications, 9(4): 39–52. DOI: 10.5815/ijisa.2017.04.05
- Automatic Content Classification with ABBYY Solutions. 2019. Available at
https://www.abbyy.com/solutions/document-classification/ [Last accessed 28.08.2018]. - Bourgonje, P, Moreno-Schneider, J, Srivastava, A and Rehm, G. 2018. Automatic Classification of Abusive Language and Personal Attacks in Various Forms of Online Communication. 180–191. DOI: 10.1007/978-3-319-73706-5_15
- Chen, G, Ye, D, Xing, Z, Chen, J and Cambria, E. 2017. Ensemble application of convolutional and recurrent neural networks for multi-label text categorization. B: 2017 International Joint Conference on Neural Networks (IJCNN), 2377–2383.
IEEE . DOI: 10.1109/IJCNN.2017.7966144 - Clark, J, Koprinska, I and Poon, J. 2003. A neural network based approach to automated e-mail classification. B: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), 702–705.
IEEE Comput. Soc. DOI: 10.1109/WI.2003.1241300 - Dimov, D, Low, F, Ibrakhimov, M, Stulina, G and Conrad, C. 2017. SAR and optical time series for crop classification. B: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 811–814.
IEEE . DOI: 10.1109/IGARSS.2017.8127076 - Du, J. 2017. Automatic text classification algorithm based on Gauss improved convolutional neural network. Journal of Computational Science, 21: 195–200. DOI: 10.1016/j.jocs.2017.06.010
- Feng, K-Y, Cai, Y-D and Chou, K-C. 2005. Boosting classifier for predicting protein domain structural class. Biochemical and Biophysical Research Communications, 334(1): 213–217. DOI: 10.1016/j.bbrc.2005.06.075
- gensim: models.word2vec – Word2vec embeddings. 2019. Available at
https://radimrehurek.com/gensim/models/word2vec [Last accessed 28.08.2018]. - Géron, A. 2018. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems. 1-e and. O’Reilly.
- Goncalves, T and Quaresma, P. 2018. Evaluating preprocessing techniques in a Text Classification problem.
- Joulin, A, Grave, E, Bojanowski, P and Mikolov, T. 2016. Bag of Tricks for Efficient Text Classification. Available at
http://arxiv.org/abs/1607.01759 . DOI: 10.18653/v1/E17-2068 - Klyshinsky, ES and Kochetkova, NA. 2015. Method of extracting technical terms using the measure of strangeness. Novye Informacionnye Tekhnologii v Avtomatizirovannyh Sistemah, 17: 365–370.
- Korenius, T, Laurikkala, J, Järvelin, K and Juhola, M. 2004. Stemming and lemmatization in the clustering of finnish text documents. B: Proceedings of the Thirteenth ACM conference on Information and knowledge management – CIKM ’04, 625. New York, USA:
ACM Press . DOI: 10.1145/1031171.1031285 - Kusner, M, Sun, Y, Kolkin, N and Weinberger, K. 2015. From Word Embeddings To Document Distances. Bach, F and Blei, D (ed.), B: Proceedings of the 32nd International Conference on Machine Learning, 957–966. Lille, France:
PMLR . Available athttp://proceedings.mlr.press/v37/kusnerb15.html . - Lapach, SN and Radchenko, SG. 2012. The main problems of constructing regression models. Matematicheskie Mashiny I Sistemy, 1(4): 125–133.
- Lex, E, Seifert, C, Granitzer, M and Juffinger, A. 2010. Efficient Cross-Domain Classification of Weblogs. International Journal of Intelligent Computing Research, 1(3): 55–62. DOI: 10.20533/ijicr.2042.4655.2010.0007
- Liu, Y, Bi, J-W and Fan, Z-P. 2017. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Information Sciences, 394–395: 38–52. DOI: 10.1016/j.ins.2017.02.016
- LPU download page. 2019. Available at
https://www.cs.uic.edu/~liub/LPU/LPU-download.html [Last accessed 28.08.2018]. - Luo, Y, Ye, W, Zhao, X, Pan, X and Cao, Y. 2017. Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm. Sensors, 17(10): 2376. DOI: 10.3390/s17102376
- Raju, MK, Subrahmanian, ST and Sivakumar, T. 2017. A Comparative Survey on Different Text Categorization Techniques. Journal of Computer Science and Engineering, 5(4): 1612–1618.
- Sammouda, R. 2017. A Comparative Study of Effective Supervised Learning Methods on Arabic Text Classification, 17(12): 130–133.
- Scherer, D, Müller, A and Behnke, S. 2010. Evaluation of pooling operations in convolutional architectures for object recognition. B: Proceeding ICANN’10 Proceedings of the 20th international conference on Artificial neural networks: Part III, 92–101. DOI: 10.1007/978-3-642-15825-4_10
- Semberecki, P and Maciejewski, H. 2017. Deep Learning methods for Subject Text Classification of Articles. cc. 357–360. DOI: 10.15439/2017F414
- Sokolova, M and Bobicev, V. 2009. Classification of Emotion Words in Russian and Romanian Languages, 416–420.
- Sun, Y, Kamel, MS, Wong, AKC and Wang, Y. 2007. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12): 3358–3378. DOI: 10.1016/j.patcog.2007.04.009
- Tang, D, Qin, B and Liu, T. 2015. Document modeling with gated recurrent neural network for sentiment classification. B: Proceedings of the 2015 conference on empirical methods in natural language processing. cc. 1422–1432. DOI: 10.18653/v1/D15-1167
- Toloşi, L and Lengauer, T. 2011. Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics, 27(14): 1986–1994. DOI: 10.1093/bioinformatics/btr300
- Toman, M, Tesar, R and Jezek, K. 2006. Influence of word normalization on text classification. B: Proceedings of InSciT. cc. 354–358. Available at
http://www.kiv.zcu.cz/research/groups/text/publications/inscit20060710.pdf . - Uysal, AK and Gunal, S. 2014. The impact of preprocessing on text classification. Information Processing & Management, 50(1): 104–112. DOI: 10.1016/j.ipm.2013.08.006
- Viniti.ru. 2019. Available at
http://www.viniti.ru/ [Last accessed 01.01.2019]. - Vorobyov, NV and Puchkov, EV. 2017. Text classification using convolutional neural network. Yuniy Issledovatel Dona, 9(6): 2–7.
- Wang, X, Jiang, W and Luo, Z. 2016. Combination of Convolutional and Recurrent Neural Network for Sentiment Analysis of Short Texts. B: Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan:
The COLING 2016 Organizing Committee . cc. 2428–2437. Available athttps://www.aclweb.org/anthology/C16-1229 - Wang, Y, Zhou, Z, Jin, S, Liu, D and Lu, M. 2017. Comparisons and Selections of Features and Classifiers for Short Text Classification. IOP Conference Series: Materials Science and Engineering, 261:
012018 . DOI: 10.1088/1757-899X/261/1/012018 - Watson Natural Language Classifier. 2019. Available at
https://www.ibm.com/watson/services/natural-language-classifier/ [Last accessed 28.08.2018]. - Wu, L, Yen, IE-H, Xu, K, Xu, F, Balakrishnan, A, Chen, P-Y, Ravikumar, P and Witbrock, MJ. 2018. Word Mover’s Embedding: From Word2Vec to Document Embedding. CoRR, abs/1811.01713. Available at
http://arxiv.org/abs/1811.01713 . DOI: 10.18653/v1/D18-1482 - Xu, B and Zhang, Y. 2011. A new SVM Chinese text of classification algorithm based on the semantic kernel. B: 2011 International Conference on Multimedia Technology, 2857–2860.
IEEE . DOI: 10.1109/ICMT.2011.6003097 - Yussupova, NI, Bogdanova, D and Boyko, MN. 2012. Applying of Sentiment Analysis for Texts in Russian Based on Machine Learning Approach.
