Have a personal or library account? Click to login
Understanding Human Mobility Patterns in a Developing Country Using Mobile Phone Data Cover

Understanding Human Mobility Patterns in a Developing Country Using Mobile Phone Data

Open Access
|Jan 2019

References

  1. 1Ahas, R, Silm, S, Järv, O, Saluveer, E and Tiru, M. 2010. Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones. Journal of Urban Technology, 17(1): 327. DOI: 10.1080/10630731003597306
  2. 2Alexander, L, Jiang, M, Murga, M and Gonzalez, M. 2015. Origin-destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 58: 240250. DOI: 10.1016/j.trc.2015.02.018
  3. 3Bar-Gera, H. 2007. Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: A case study from Israel. Transportation Research Part C: Emerging Technologies, 15(6): 380391. DOI: 10.1016/j.trc.2007.06.003
  4. 4Batty, M. 1976. Urban modelling: algorithms, calibrations, predictions. London: Syndics of Cambridge University Press.
  5. 5Bharat, PB and Larsen, O. 2011. Are intrazonal trips ignorable? Transport Policy, 18(1): 1322. DOI: 10.1016/j.tranpol.2010.04.004
  6. 6BLS – Bureau of labor statistics. 2017. American time use survey – 2017 results. U.S. Department of Labour. USDL-18-1058. Available at: https://www.bls.gov/news.release/pdf/atus.pdf [Accessed 21.11.2018].
  7. 7Caceres, N, Wideberg, J and Benitez, F. 2008. Review of Traffic Data Estimations Extracted from Cellular Networks. IET Intelligent Transport Systems, 2(3): 179192. DOI: 10.1049/iet-its:20080003
  8. 8Calabrese, F, Colonna, M, Lovisolo, P, Parata, D and Ratti, C. 2011a. Real-time urban monitoring using cellphones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1): 141151. DOI: 10.1109/TITS.2010.2074196
  9. 9Calabrese, F, Lorenzo, G, Liu, L and Ratti, C. 2011b. Estimating origin-destination flows using mobile phone location data. Pervasive Computing, IEEE, 10(4): 3644. DOI: 10.1109/MPRV.2011.41
  10. 10Cascetta, E, Pagliara, F and Papola, A. 2007. Alternative approaches to trip distribution modelling: a retrospective review and suggestions for combining different approaches. Regional Science, 86(4): 597620. DOI: 10.1111/j.1435-5957.2007.00135.x
  11. 11Çolak, L, Alexander, B, Alvim, S, Mehndiretta, M and Gonzalez, M. 2015. Analyzing Cell Phone Location Data for Urban Travel: Current Methods, Limitations and Opportunities. Transportation Research Board Annual meeting. Washington, D.C.
  12. 12Csáji, B, Browet, A, Traag, V, Delvenne, J, Huens, E, Dooren, P, Smoreda, Z and Blondel, V. 2013. Exploring the mobility of mobile phone users. Physica A Statistical Mechanics and its Applications, 392(6): 14591473. DOI: 10.1016/j.physa.2012.11.040
  13. 13Demissie, MD. 2014. Combining datasets from multiple sources for urban and transportation planning: Emphasis on cellular network data, Ph.D. dissertation, Dept. Civil Eng., Coimbra Univ., Coimbra, Portugal.
  14. 14Demissie, MG, Correia, G and Bento, C. 2013a. Intelligent road traffic status detection system through cellular networks handover information: An exploratory study. Transp. Res. C, Emerging Technol, 32: 7678. DOI: 10.1016/j.trc.2013.03.010
  15. 15Demissie, MG, Correia, GH and Bento, C. 2013b. Traffic volume estimation through cellular networks handover information. 13th World Conference on Transportation Research, Rio de Janeiro, Brazil.
  16. 16Demissie, MG, Correia, GH and Bento, C. 2013c. Exploring cellular network handover information for urban mobility analysis. Journal of Transport Geography, 31: 164170. DOI: 10.1016/j.jtrangeo.2013.06.016
  17. 17Demissie, MG, Correia, GH and Bento, C. 2015. Analysis of the pattern and intensity of urban activities through aggregate cellphone usage. Transportmetrica A: Transport Science, 11(6): 502524. DOI: 10.1080/23249935.2015.1019591
  18. 18Demissie, MG, Phithakkitnukoon, S and Kattan, L. 2018. Trip Distribution Modeling Using Mobile Phone Data: Emphasis on Intra-Zonal Trips. IEEE Trans. Intell. Transp. Syst. Oct. 2018. DOI: 10.1109/TITS.2018.2868468
  19. 19Demissie, MG, Phithakkitnukoon, S, Sukhvibul, T, Antunes, F and Bento, C. 2016a. Inferring origin-destination flows using mobile phone data: A case study of Senegal. International conference on electrical engineering/electronics, computer, telecommunications and information technology. Chiang Mai, Thailand. DOI: 10.1109/ECTICon.2016.7561328
  20. 20Demissie, MG, Phithakkitnukoon, S, Sukhvibul, T, Antunes, F, Gomes, R and Bento, C. 2016b. Inferring passenger travel demand to improve urban mobility in developing countries Using Cell Phone Data: A Case Study of Senegal. IEEE Transactions on Intelligent Transportation Systems, 17(9): 24662478. DOI: 10.1109/TITS.2016.2521830
  21. 21Dennett. 2012. Estimating flows between geographical locations: “Get me started in” spatial interaction modelling. Centre for Advanced Spatial Analysis, University College, London.
  22. 22FHWA. 2010. Travel model validation and reasonableness checking manual second edition. Cambridge Systematics, Inc.
  23. 23Flowerdew, R and Lovett, A. 1988. Fitting constrained poisson regression models to interurban migration flows. Geographical Analysis, 20(4). DOI: 10.1111/j.1538-4632.1988.tb00184.x
  24. 24Geohive. 2014. http://www.geohive.com/cntry/senegal%20ext.aspx. Accessed Jun. 01, 2017.
  25. 25González, M, Hidalgo, C and Barabási, A. 2008. Understanding individual human mobility patterns. Nature, 453: 779782. DOI: 10.1038/nature06958
  26. 26Gundlegård, D, Rydergren, C, Breyer, N and Rajna, B. 2016. Travel demand estimation and network assignment based on cellular network data. Computer Communications, 95: 2942. DOI: 10.1016/j.comcom.2016.04.015
  27. 27Hariharan, R and Toyama, K. 2004. Project lachesis: parsing and modeling location histories. Geogr. Inform. Sci, 106124.
  28. 28Hoteit, S, Secci, S, Sobolevsky, C, Ratti, C and Pujolle, G. 2014. Estimating human trajectories and hotspots through mobile phone data. Computer Networks, 64: 296307. DOI: 10.1016/j.comnet.2014.02.011
  29. 29Kordi, M, Kaiser, C and Fotheringham, A. 2012. A possible solution for the centroid-to-centroid and intra-zonal trip length problems. AGILE’2012 International Conference on Geographic Information Science. Avignon.
  30. 30Liu, HX, Danczyk, A, Brewer, R and Starr, R. 2008. Evaluation of cellphone traffic data in Minnesota. Transportation Research Record: Journal of the Transportation Research Board, 2086: 17. DOI: 10.3141/2086-01.
  31. 31Ortuzar, JD and Willumsen, LG. 2011. Modelling transport. Wiley. DOI: 10.1002/9781119993308
  32. 32Phithakkitnukoon, S, Smoreda, Z and Olivier, P. 2012. Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data. PLoS ONE, 7(6). DOI: 10.1371/journal.pone.0039253
  33. 33Phithakkitnukoon, S, Sukhvibul, T, Demissie, M, Smoreda, Z, Natwichai, J and Bento, C. 2017. Inferring social influence in transport mode choice using mobile phone data. EPJ Data Science, 6(11). DOI: 10.1140/epjds/s13688-017-0108-6
  34. 34Qin, S, Verkasalo, H, Mohtaschemi, M, Hartonen, T and Alava, M. 2012. Patterns, Entropy, and Predictability of Human Mobility and Life. PloS one, 7(12). DOI: 10.1371/journal.pone.0051353
  35. 35Ratti, C, Sevtsuk, A, Huang, S and Pailer, R. 2005. Mobile landscapes: Graz in real time. Symposium on LBS & TeleCartography. November 28–30, 2005.
  36. 36R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  37. 37Schneider, C, Belik, V, Couronné, T, Smoreda, Z and González, M. 2013. Unraveling daily human mobility motifs. J. Roy. Soc. Interface, 10.
  38. 38Song, C, Qu, Z, Blumm, N and Barabási, A. 2010. Limits of Predictability in Human Mobility. Science, 327(5968): 10181021. DOI: 10.1126/science.1177170
  39. 39Toole, J, Colak, S, Sturt, B, Alexander, L, Evsukoff, A and Gonzalez, M. 2015. The path most traveled: Travel demand estimation using big data resources. Transportation Research Part C: Emerging Technologies, 58: 161428. DOI: 10.1016/j.trc.2015.04.022
  40. 40Toole, J, Ulm, M, González, M and Bauer, D. 2012. Inferring land use from mobile phone activity. ACM SIGKDD international workshop on urban computing. Beijing, China. DOI: 10.1145/2346496.2346498
  41. 41Wang, Y, Correia, G, Romph, E and Santos, BF. 2017. Road network design in a developing country using mobile phone data: An application to Senegal. IEEE Intelligent Transportation Systems Magazine. DOI: 10.1109/MITS.2018.2879168
  42. 42White, J and Wells, I. 2002. Extracting origin destination information from mobile phone data. International Conference on Road Transportation and Control, 3034. London. DOI: 10.1049/cp:20020200
  43. 43Yan, X, Zhao, C, Fan, Y, Di, Z and Wang, W. 2014. Universal predictability of mobility pattern in cities. J R Soc Interface, 11(100). DOI: 10.1098/rsif.2014.0834
  44. 44Yang, Y, Herrera, C, Eagle, N and Gonzalez, M. 2014. Limits of Predictability in Commuting Flows in the Absence of Data for Calibration. Scientific reports, 4(5662).
  45. 45Zheng, Y, Zhang, L, Xie, X and Ma, W. 2009. Mining interesting locations and travel sequences from GPS trajectories. Proceedings of the 18th international conference on World wide web. ACM. DOI: 10.1145/1526709.1526816
Language: English
Submitted on: Aug 31, 2018
Accepted on: Nov 30, 2018
Published on: Jan 3, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Merkebe Getachew Demissie, Santi Phithakkitnukoon, Lina Kattan, Ali Farhan, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.