Have a personal or library account? Click to login
A Triad Percolation Method for Detecting Communities in Social Networks Cover

A Triad Percolation Method for Detecting Communities in Social Networks

Open Access
|Nov 2018

References

  1. Aggarwal, C and Subbian, K. 2014. Evolutionary network analysis: A survey. ACM Computing Surveys, 47(1): 136. DOI: 10.1145/2601412
  2. Ahn, YY, Bagrow, JP and Lehmann, S. 2010. Link communities reveal multi-scale complexity in networks. Nature, 466: 761764. DOI: 10.1038/nature09182
  3. Amelio, A and Pizzuti, C. 2014. Overlapping Community Discovery Methods: A Survey. In: Gündüz-Öğüdücü, S and Etaner-Uyar, A (eds.), Social Networks: Analysis and Case Studies. Lecture Notes in Social Networks, 105125. Springer, Vienna. DOI: 10.1007/978-3-7091-1797-2_6
  4. Bron, C and Kerbosch, J. 1973. Algorithm 457: Finding all cliques in an undirected graph, Community. ACM, 16(9): 575577. DOI: 10.1145/362342.362367
  5. Clauset, A, Newman, ME and Moore, C. 2004. Finding community structure in very large networks. Physical Review E, 70(2): 066111. DOI: 10.1103/PhysRevE.70.066111
  6. Conrad, L, Reid, F, McDaid, A and Hurley, N. 2010. Detecting highly overlapping community structure by greedy clique expansion. In: The 4th SNA-KDD Workshop’10, Washington, DC USA, 10. July 25. URL: http://hdl.handle.net/10197/2516.
  7. Cui, YZ, Wang, XY and Li, JQ. 2014. Detecting overlapping communities in networks using the maximal sub-graph and the clustering coefficient. Physica A: Statistical Mechanics and its Applications, 405: 8591. DOI: 10.1016/j.physa.2014.03.027
  8. Delvenne, JC, Yaliraki, SN and Barahona, M. 2010. Stability of graph communities across time scales. Proceedings of the National Academy of Sciences, 29: 1275512760. DOI: 10.1073/pnas.0903215107
  9. Fagnan, J, Zaïane, O and Barbosa, D. 2014. Using Triads to Identify Local Community Structure in Social Networks. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), 108112. Beijing, China, August 17–20. DOI: 10.1109/ASONAM.2014.6921568
  10. Fortunato, S. 2010. Community detection in graphs. Physics Reports, 486(3): 75174. DOI: 10.1016/j.physrep.2009.11.002
  11. Fortunato, S and Castellano, C. 2012. Community structure in graphs. In: Meyers, R (Eds.), Computational Complexity, 490512. Springer, New York, NY. DOI: 10.1007/978-1-4614-1800-9
  12. Han, H and Tang, J. 2015. Probabilistic community and role model for social networks. In: Proceedings of the 21th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, 407416. Sydney, NSW, Australia.
  13. Lancichinetti, A, Fortunato, S and Radicchi, F. 2008. Benchmark graphs for testing community detection algorithms. Physical Review E, 78(4). DOI: 10.1103/PhysRevE.78.046110
  14. Lancichinetti, A, Fortunato, S and Skertész, J. 2009. Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys, 11(3). DOI: 10.1088/1367-2630/11/3/033015
  15. Leskovec, L, Lang, KJ, Dasgupta, A and Mahoney, MW. 2008. Statistical properties of community structure in large social and information networks. In: The 17th International World Wide Web Conference, WWW’08), 695704. Beijing, China. April 21–25. DOI: 10.1145/1367497.1367591
  16. Leskovec, J, Lang, KJ and Mahoney, M. 2010. Empirical comparison of algorithms for net- work community detection. In: Proceedings of the 19th International Conference on World Wide Web, 631640. Raleigh, North Carolina, USA. DOI: 10.1145/1772690.1772755
  17. Liu, D, Jin, D, He, D, Huang, J, Yang, J and Yang, B. 2013. Community mining in complex networks. Journal of Computer Research & Development, 50(10): 21402154. URL: http://crad.ict.ac.cn/EN/abstract/article_1338.shtml.
  18. Lusseau, D, Schneider, K, Boisseau, OJ, Haase, P, Slooten, E and Dawson, SM. 2003. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations-Can geographic isolation explain this unique trait. Behavioral Ecology and Sociobiology, 54(4): 396405. DOI: 10.1007/s00265-003-0651-y
  19. McAuley, J and Leskovec, J. 2012. Learning to Discover Social Circles in Ego Networks. In: Advances in Neural Information Processing System 25 (NIPS 2012), curran associates, Inc., 539547. URL: http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks.pdf.
  20. Mu, CH, Liu, Y, Wu, JS and Jiao, LC. 2014. Two-stage algorithm using influence coefficient for detecting the hierarchical, non-overlapping and overlapping community structure. Physica A: Statistical Mechanics and its Applications, 408: 4761. DOI: 10.1016/j.physa.2014.04.023
  21. Newman, MEJ. 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23): 85778696. DOI: 10.1073/pnas.0601602103
  22. Palla, G, Derényi, I, Farkas, I and Vicsek, T. 2005. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043): 814818. DOI: 10.1038/nature03607
  23. Peel, L, Larremore, DB and Clauset, A. 2017. The ground truth about metadata and community detection in networks. Science Advances, 3(5): 18. DOI: 10.1126/sciadv.1602548
  24. Pizzuti, C. 2018. Evolutionary Computation for Community Detection in Networks: A Review. IEEE Transactions on Evolutionary Computation, 22(3): 464483. DOI: 10.1109/TEVC.2017.2737600
  25. Reichardt, J and Bornholdt, S. 2006. Statistical mechanics of community detection. Physical Review E, 74: 016110. DOI: 10.1103/PhysRevE.74.016110
  26. Shen, HW, Cheng, XQ, Cai, K and Hu, MB. 2009. Detect overlapping and hierarchical community structure in networks. Physica A: Statistical Mechanics and its Applications, 38: 17061712. DOI: 10.1016/j.physa.2008.12.021
  27. Shi, C, Cai, Y, Fu, D, Dong, Y and Wu, B. 2013. A link clustering based overlapping community detection algorithm. Data Knowl. Eng., 87: 394404. DOI: 10.1016/j.datak.2013.05.004
  28. Veldt, N, Gleich, DF and Wirth, A. 2018. A Correlation Clustering Framework for Community Detection. In: Proceedings of the 2018 World Wide Web Conference, 439448. Lyon, France. April 23–27. DOI: 10.1145/3178876.3186110
  29. Wagenseller, P and Wang, F. 2018. Size Matters: A Comparative Analysis of Community Detection Algorithms. IEEE Transactions on Computational Social Systems, 110. DOI: 10.1109/TCSS.2018.2875626
  30. Wang, L. 2011. Using the relationship of shared neighbors to find hierarchical overlapping communities for effective connectivity in IoT. In: The 6th International Conference on Pervasive Computing and Applications, Port Elizabeth, 400406. South Africa. Oct. 26–28. DOI: 10.1109/ICPCA.2011.6106538
  31. Xie, J, Kelley, S and Szymanski, BK. 2013. Overlapping community detection in net- works: The state-of-the-art and comparative study. ACM Comput. Surv. (CSUR), 45(4): 135. DOI: 10.1145/2501654.2501657
  32. Xie, JR, Szymanski, BK and Liu, XM. 2011. SLPA: Uncovering overlapping communities in social networks via a speaker–listener interaction dynamic process. In: The 11th IEEE International Conference on Data Mining Workshops, 344349. Vancouver, BC, Canada. Dec. 11–11. DOI: 10.1109/ICDMW.2011.154
  33. Xu, Y, Xu, H, Zhang, D and Zhang, Y. 2016. Finding overlapping community from social networks based on community forest model. Knowledge-Based Systems, 109: 238255. DOI: 10.1016/j.knosys.2016.07.007
  34. Ye, Q, Wu, B, Zhao, ZX and Wang, B. 2011. Detecting link communities in massive networks. In: The 2011 International Conference on Advances in Social Networks Analysis and Mining, 7178. Kaohsiung, Taiwan. July 25–27. DOI: 10.1109/ASONAM.2011.53
  35. Zachary, WW. 1977. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4): 452473. DOI: 10.1086/jar.33.4.3629752
  36. Zhang, ZW and Wang, ZY. 2015. Mining overlapping and hierarchical communities in complex networks. Physica A: Statistical Mechanics and its Applications, 421: 2533. DOI: 10.1016/j.physa.2014.11.023
  37. Zhao, Z, Zheng, S, Li, C, Sun, J, Chang, L and Chiclana, F. 2018. A comparative study on community detection methods in complex networks. Journal of Intelligent and Fuzzy Systems, 35(1): 110. DOI: 10.3233/JIFS-17682
Language: English
Submitted on: Feb 19, 2018
|
Accepted on: Nov 2, 2018
|
Published on: Nov 26, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Zhiwei Zhang, Lin Cui, Zhenggao Pan, Aidong Fang, Haiyang Zhang, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.