References
- Arndt, DS and Brewer, M. 2016. Assessing service maturity through end user engagement and climate monitoring. 2016 ESIP summer meeting,
19–22 July 2016 . Durham, NC, USA. - Blunden, J and Arndt, DS. (eds) 2017. State of the Climate in 2016. Bull. Meteor. Soc., 98(8): S1–S277. DOI: 10.1175/2017BAMSStateoftheClimate.2
- Brewer, M, Hollingshead, A and Owen, T. 2017. User engagement and analytics. 97th American Meteorological Society Annual Meeting,
21–26 January 2017 . Seattle, Washington, USA. - CDRP (NOAA’s Climate Data Record Program). 2014. Transitioning CDRs from Research to Operations (R2O). CDRP-PLAN-0017. 48. Version 2 March 13, 2014. [Available online at:
https://www1.ncdc.noaa.gov/pub/data/sds/cdr/Guidelines/Transitioning_CDRs_from_R2O.pdf ]. - Chisholm, M. 2014. Data stewards versus Subject Matter Experts and Data Managers. Information Management. Version: May 28, 2014. [Available online at:
http://www.information-management.com/news/data-stewards-versus-subject-matter-experts-and-data-managers-10025704-1.html .]. - Chung, L. 2013.
Non-Functional Requirements: Soft is harder to deal with than hard – The Ten Commandments . Requirements Management Blog. IBM. Version: September 17, 2013. - Chung, L and do Prado Leite, JCS. 2009.
On Non-Functional Requirements in Software Engineering , 363–379. In: Borgida, AT, Chaudhri, VK, Giorgini, P and Yu, ES (eds.), Conceptual Modeling: Foundations and Applications. Lecture Notes in Computer Science, 5600. Springer, Berlin, Heidelberg. - CMMI. 2014. Data Management Maturity Model. CMMI Institute. Version: 1.0 August 2014, 248.
- Deming, WE. 1986.
Out of the Crisis . MIT Center for Advanced Engineering Study. The 2010 MIT Press edition, 507. Cambridge, MA, USA. - Faundeen, J. 2017. Developing criteria to establish trusted digital repositories. Data Science Journal, 16. DOI: 10.5334/dsj-2017-022
- FGDC (Federal Geographic Data Committee). 2002.
Content standard for digital geospatial metadata – extension for remote sensing data . Version: FGDC-STD-012-2002. Federal Geographic Data Committee. Washington, D.C. [Available online at:https://www.fgdc.gov/standards/projects/csdgm_rs_ex/MetadataRemoteSensingExtens.pdf ]. - Hills, DJ, Downs, RR, Duerr, R, Goldstein, JC, Parsons, MA and Ramapriyan, HK. 2015. The Importance of Data Set Provenance for Science. EOS, 96. DOI: 10.1029/2015EO040557
- Hu, W and Feng, J. 2005. Data and information quality: an information-theoretic perspective. Computing and Information Systems, 9: 32–47.
- Kruk, MC, Parker, B, Marra, JJ, Werner, K, Heim, R, Vose, R and Malsale, P. 2017. Engaging with users of climate information and the co-production of knowledge. Weather, Climate, and Society. DOI: 10.1175/WCAS-D-16-0127.1
- Lee, YW, Strong, DM, Kahn, BK and Wang, RY. 2002. AIMQ: a methodology for information quality assessment, Information & Management, 40: 133–146. DOI: 10.1016/S0378-7206(02)00043-5
- Melillo, JM, Richmond, TC and Yohe, GW. (eds) 2014. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841. DOI: 10.7930/J0Z31WJ2
- Mosely, M, Brackett, M, Early, S and Henderson, D. (eds) 2009. The Data Management Body of Knowledge (DAMA-DMBOK Guide). Bradley Beach, NJ, USA: Technics Publications, LLC. 2nd Print Edition, 406.
- Nayab, N and Richter, L. 2013. Exploring the users of Plan-Do-Check-Act cycles. Bright Hub Project Management. Version: 7/21/2013. [Accessed on 4/27/2017 at:
http://www.brighthubpm.com/methods-strategies/75926-exploring-the-uses-of-plan-do-check-act-pdca-cycles/ ]. - NRC. 2007.
Environmental data management at NOAA: Archiving, stewardship, and access , 130. The National Academies Press. Washington, D.C. DOI: 10.17226/12017 [Available online at:https://www.nap.edu/catalog/12017.html ]. - NRC (National Research Council). 2005.
Review of NOAA’s plan for the scientific stewardship program , 38. Washington, DC: The National Academies Press. DOI: 10.17226/11421 [Available online at:https://www.nap.edu/catalog/11421.html ]. - OMB (Office of Management and Budget). 1999. Uniform Administrative Requirements for Grants and Agreements with Institutions of Higher Education, Hospitals, and Other Non-Profit Organizations. OMB Circular A-110.
- Patil, DJ. 2012. Data Jujitsu: The art of turning data into product. Radar. Version: 17 July 2012. [Available online at:
http://radar.oreilly.com/2012/07/data-jujitsu.html ]. - Peng, G. 2018. The state of assessing data stewardship maturity – An overview. Data Science Journal, 17. DOI: 10.5334/dsj-2018-007
- Peng, G, Lawrimore, J, Toner, V, Lief, C, Baldwin, R, Ritchey, NA, Brinegar, D and Delgreco, SA. 2016b. Assessing Stewardship Maturity of the Global Historical Climatology Network-monthly (GHCN-M) Dataset: Use Case Study and Lessons Learned. D.-Lib Magazine, 22. DOI: 10.1045/november2016-peng
- Peng, G, Ramapriyan, H and Moroni, DF. 2016. The State of Building a Consistent Framework for Curation and Presentation of Earth Science Data Quality. Poster. ESIP 2017 winter meeting,
11–13 January 2017 . Bethesda, MD, USA. [Available online at:http://commons.esipfed.org/node/9625 ]. - Peng, G, Ritchey, NA, Casey, KS, Kearns, EJ, Privette, JL, Saunders, D, Jones, P, Maycock, T and Ansari, S. 2016a. Scientific stewardship in the Open Data and Big Data era — Roles and responsibilities of stewards and other major product stakeholders. D.-Lib Magazine, 22. DOI: 10.1045/may2016-gepeng
- Plotkin, D. 2014.
Data stewardship: an actionable guide to effective data management and data governance . Library of Congress Cataloging-in-Publication Data. Morgan Kaufmann Publishers, 223. - Poppendieck, M. 2002. Principles of lean thinking. Poppendieck L.L.C. [Available online at:
https://yourcareeracademy.com/yca/assets/uploads/lib_file/principles%20of%20LeanThinking.pdf ]. - Ramapriyan, HK, Goldstein, J, Hua, H and Wolfe, R. 2016.
Tracking and Establishing Provenance of Earth Science Datasets: A NASA-based example. Chapter in Provenance and Annotation of Data and Process , Volume 9672 of the series Lecture Notes in Computer Science. In: Mattoso, M and Glavic, B (eds.), Springer, 226–229. DOI: 10.1007/978-3-319-40593-3 - Ramapriyan, HK, Kempler, S, Lynnes, C, McConaughy, G, McDonald, K, King, R, Calvo, S, Harberts, R and Roelofs, L. 2002. Conceptual Study of Intelligent Data Archives of the Future. 19th IEEE Symposium on Mass Storage Systems.
April 15–18, 2002 . College Park, MD, USA. [Available online at:http://storageconference.us/2002/papers/b07bp-hkr.pdf ]. - Ramapriyan, HK, Peng, G, Moroni, D and Shie, CL. 2017. Ensuring and Improving Information Quality for Earth Science Data and Products. D.-Lib Magazine, 23. DOI: 10.1045/july2017-ramapriyan
- Shewhart, WA. 1939. Statistical method from the viewpoint of quality control. The Dove edition, 155.
- Stvilia, B, Gasser, L, Twidale, MB and Smith, LC. 2007. A framework for information quality assessment. Journal of the Association for Information Science and Technology, 58: 1720–1733. DOI: 10.1002/asi.20652
- TechTarget. 2007. What is best practice? In: The essential guide to supply chain management best practices. [Available at:
http://searchsoftwarequality.techtarget.com/definition/best-practice ]. - Tilmes, C, Fox, P, Ma, XG, McGuinness, DL, Privette, AP, Smith, A, Waple, A, Zednik, S and Zheng, JG. 2013. Provenance Representation for the National Climate Assessment in the Global Change Information System. IEEE Trans. Geosci. and Remote Sensing, 51. DOI: 10.1109/TGRS.2013.2262179
- Tilmes, C, Privette, AP, Chen, J, Ramachandran, R, Bugbee, KM and Wolfe, RE. 2015b. Linking from observations to data to actionable science in the climate data initiative. Proc. 2015 IEEE Geosci. and Remote Sensing Symposium,
26–31 July 2015 . Milan, Italy. - Tilmes, C, Wolfe, RE, Duggan, B, Aulenbach, S, Goldstein, JC, Ma, X and Zednik, S. 2015a. Supporting trust with provenance of the findings of the national climate assessment. METHOD 2015: The 4th Intl. Workshop on Methods for Establishing Trust of (Open) Data,
11 Oct. 2015 . Bethlehem, PA, USA. [Available at:http://www.few.vu.nl/~dceolin/method2015/papers/METHOD_2015_paper_2.pdf ]. - USGCRP (U.S. Global Change Research Program). 2016.
The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Crimmins . In: Balbus, AJ, Gamble, JL, Beard, CB, Bell, JE, Dodgen, D, Eisen, RJ, Fann, N, Hawkins, MD, Herring, SC, Jantarasami, L, Mills, DM, Saha, S, Sarofim, MC, Trtanj, J and Ziska, L (eds.), U.S. Global Change Research Program, 312. Washington, DC. DOI: 10.7930/J0R49NQX - Wang, RY and Strong, DM. 1996. Beyond accuracy: What data quality means to consumers. Journal of Management Information Systems, 12(4): 5. DOI: 10.1080/07421222.1996.11518099
- Wilkinson, MD and 51 others. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3. DOI: 10.1038/sdata.2016.18
