Have a personal or library account? Click to login
Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of Between-Imputation Iterations Cover

Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of Between-Imputation Iterations

Open Access
|Jul 2017

References

  1. 1
    Abe T Iwasaki M Evaluation of statistical methods for analysis of small-sample longitudinal clinical trials with dropouts Journal of the Japanese Society of Computational Statistics 2007 20 1 1 18 10.5183/jjscs1988.20.1
  2. 2
    Acemoglu D Johnson S Robinson J A Aghion P Durlauf S Institutions as the fundamental cause of long-run growth Handbook of Economic Growth 2005 North Holland Elsevier
  3. 3
    Allison P D Missing Data 2002 Thousand Oaks, CA Sage Publications 10.4135/9781412985079
  4. 4
    Baraldi A N Enders C K An introduction to modern missing data analyses Journal of School Psychology 2010 48 1 5 37 10.1016/j.jsp.2009.10.001
  5. 5
    Barnard J Rubin D B Small-sample degrees of freedom with multiple imputation Biometrika 1999 86 4 948 955 10.1093/biomet/86.4.948
  6. 6
    Barro R J Determinants of Economic Growth: A Cross-Country Empirical Study 1997 Cambridge, MA MIT Press
  7. 7
    Bodner T E What improves with increased missing data imputations? Structural Equation Modeling 2008 15 651 675 10.1080/10705510802339072
  8. 8
    Carpenter J R Kenward M G Multiple Imputation and its Application 2013 Chichester, West Sussex A John Wiley & Sons Publication
  9. 9
    Carsey T M Harden J J Monte Carlo Simulation and Resampling Methods for Social Science 2014 Thousand Oaks, CA Sage Publications 10.4135/9781483319605
  10. 10
    Central Intelligence Agency The World Factbook 2016 Available at: https://www.cia.gov/library/publications/the-world-factbook/index.html [Last accessed November 27, 2016]
  11. 11
    Cheema J R Some general guidelines for choosing missing data handling methods in educational research Journal of Modern Applied Statistical Methods 2014 13 2 53 75 10.22237/jmasm/1414814520
  12. 12
    Cranmer S J Gill J We have to be discrete about this: A non-parametric imputation technique for missing categorical data British Journal of Political Science 2013 43 2 425 449 10.1017/S0007123412000312
  13. 13
    Deng Y Chang C Ido M S Long Q Multiple imputation for general missing data patterns in the presence of high-dimensional data Scientific Reports 2016 6 21689 1 10 10.1038/srep21689
  14. 14
    de Waal T Pannekoek J Scholtus S Handbook of Statistical Data Editing and Imputation 2011 Hoboken, NJ John Wiley & Sons 10.1002/9780470904848
  15. 15
    Do B C Batzoglou S What is the expectation maximization algorithm? Nature Biotechnology 2008 26 8 897 899 10.1038/nbt1406
  16. 16
    Donders A R T van der Heijden G J M G Stijnen T Moons K G M Review: A gentle introduction to imputation of missing values Journal of Clinical Epidemiology 2006 59 1087 1091 10.1016/j.jclinepi.2006.01.014
  17. 17
    Enders C K Applied Missing Data Analysis 2010 New York, NY The Guilford Press
  18. 18
    Feng Y Democracy, Governance, and Economic Performance: Theory and Evidence 2003 Cambridge, MA The MIT Press
  19. 19
    Freedom House Freedom in the World 2016 2016 Available at: https://freedomhouse.org/report/freedom-world/freedom-world-2016 [Last accessed November 30, 2016]
  20. 20
    Gill J Bayesian Methods: A Social and Behavioral Sciences Approach 2008 Second Edition London Chapman & Hall/CRC
  21. 21
    Graham J W Missing data analysis: Making it work in the real world Annual Review of Psychology 2009 60 549 576 10.1146/annurev.psych.58.110405.085530
  22. 22
    Graham J W Olchowski A E Gilreath T D How many imputations are really needed? Some practical clarifications of multiple imputation theory Prevention Science 2007 8 3 206 213 10.1007/s11121-007-0070-9
  23. 23
    Gujarati D N Basic Econometrics 2003 Fourth Edition Boston, MA McGraw-Hill
  24. 24
    Hardt J Herke M Leonhart R Auxiliary variables in multiple imputation in regression with missing X: A warning against including too many in small sample research BMC Medical Research Methodology 2012 12 184 1 13 10.1186/1471-2288-12-184
  25. 25
    Honaker J King G What to do about missing values in time series cross-section data American Journal of Political Science 2010 54 2 561 581 10.1111/j.1540-5907.2010.00447.x
  26. 26
    Honaker J King G Blackwell M Amelia II: A program for missing data Journal of Statistical Software 2011 45 7 1 47 10.18637/jss.v045.i07
  27. 27
    Honaker J King G Blackwell M Package ‘Amelia’ 2016 Available at: http://cran.r-project.org/web/packages/Amelia/Amelia.pdf [Last accessed November 30, 2016]
  28. 28
    Horowitz J L Heckman J J Leamer E The bootstrap Handbook of Econometrics 2001 North Holland Elsevier 5 10.1016/s1573-4412(01)05005-x
  29. 29
    Horton N J Kleinman K P Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models The American Statistician 2007 61 1 79 90 10.1198/000313007X172556
  30. 30
    Horton N J Lipsitz S R Multiple imputation in practice: Comparison of software packages for regression models with missing variables The American Statistician 2001 55 3 244 254 10.1198/000313007X172556
  31. 31
    Hughes R A Sterne J A C Tilling K Comparison of imputation variance estimators Statistical Methods in Medical Research 2016 25 6 2541 2557 10.1177/0962280214526216
  32. 32
    King G Honaker J Joseph A Scheve K Analyzing incomplete political science data: An alternative algorithm for multiple imputation American Political Science Review 2001 95 1 49 69
  33. 33
    Kropko J Goodrich B Gelman A Hill J Multiple imputation for continuous and categorical data: Comparing joint multivariate normal and conditional approaches Political Analysis 2014 22 4 497 519 10.1093/pan/mpu007
  34. 34
    Lee K J Carlin J B Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation American Journal of Epidemiology 2010 171 5 624 632 10.1093/aje/kwp425
  35. 35
    Lee K J Carlin J B Recovery of information from multiple imputation: A simulation study Emerging Themes in Epidemiology 2012 9 3 1 10 10.1186/1742-7622-9-3
  36. 36
    Leite W Beretvas S The performance of multiple imputation for Likert-type items with missing data Journal of Modern Applied Statistical Methods 2010 9 1 64 74 10.22237/jmasm/1272686820
  37. 37
    Li F Yu Y Rubin D B Imputing missing data by fully conditional models: Some cautionary examples and guidelines Duke University Department of Statistical Science Discussion Paper 2012 11 14 1 35
  38. 38
    Little R J A Rubin D B Statistical Analysis with Missing Data 2002 Second Edition Hoboken, NJ John Wiley & Sons 10.1002/9781119013563
  39. 39
    McNeish D Missing data methods for arbitrary missingness with small samples Journal of Applied Statistics 2017 44 1 24 39 10.1080/02664763.2016.1158246
  40. 40
    Mooney C Z Monte Carlo Simulation 1997 Thousand Oaks, CA Sage Publications 10.4135/9781412985116
  41. 41
    Raghunathan T Missing Data Analysis in Practice 2016 Boca Raton, FL CRC Press
  42. 42
    Rubin D B Multiple Imputation for Nonresponse in Surveys 1987 New York, NY John Wiley & Sons 10.1002/9780470316696
  43. 43
    Schafer J L Analysis of Incomplete Multivariate Data 1997 Boca Raton, FL Chapman & Hall/CRC 10.1201/9781439821862
  44. 44
    Schafer J L Package ‘norm2’ 2016 Available at: https://cran.r-project.org/web/packages/norm2/norm2.pdf [Last accessed November 30, 2016]
  45. 45
    Schafer J L Graham J W Missing data: Our view of the state of the art Psychological Methods 2002 7 2 147 177 10.1037//1082-989X.7.2.147
  46. 46
    Schafer J L Olsen M K Multiple imputation for multivariate missing-data problems: A data analyst’s perspective Multivariate Behavioral Research 1998 33 545 571 10.1207/s15327906mbr3304_5
  47. 47
    Schenker N Raghunathan T E Chiu P-L Makuc D M Zhang G Cohen A J Multiple imputation of missing income data in the national health interview survey Journal of the American Statistical Association 2006 101 475 924 933 10.1198/016214505000001375
  48. 48
    Scheuren F Multiple imputation: How it began and continues The American Statistician 2005 59 4 315 319 10.1198/000313005X74016
  49. 49
    Shara N Yassin S A Valaitis E Wang H Howard B V Wang W Lee E T Umans J G Randomly and non-randomly missing renal function data in the strong heart study: A comparison of imputation methods PLOS ONE 2015 10 9 1 11 10.1371/journal.pone.0138923
  50. 50
    Stuart E A Azur M Frangakis C Leaf P Multiple imputation with large data sets: A case study of the children’s mental health initiative American Journal of Epidemiology 2009 169 9 1133 1139 10.1093/aje/kwp026
  51. 51
    Takahashi M Multiple ratio imputation by the EMB algorithm: Theory and simulation Journal of Modern Applied Statistical Methods 2017a 16 1 630 656 10.22237/jmasm/1493598840
  52. 52
    Takahashi M Implementing multiple ratio imputation by the EMB algorithm (R) Journal of Modern Applied Statistical Methods 2017b 16 1 657 673 10.22237/jmasm/1493598900
  53. 53
    Takahashi M Ito T “Multiple imputation of missing values in economic surveys: Comparison of competing algorithms,” Proceedings of The 59th World Statistics Congress of the International Statistical Institute (ISI) 2013 Hong Kong, China 3240 3245
  54. 54
    Takahashi M Ito T Comparison of competing algorithms of multiple imputation: Analysis using large-scale economic data Research Memoir of Official Statistics 2014 71 39 82
  55. 55
    Takahashi M Iwasaki M Tsubaki H Imputing the mean of a heteroskedastic log-normal missing variable: A unified approach to ratio imputation Statistical Journal of the IAOS 2017 33 3 10.3233/SJI-160306 in press
  56. 56
    van Buuren S Flexible Imputation of Missing Data 2012 Boca Raton, FL Chapman & Hall/CRC 10.1201/b11826
  57. 57
    van Buuren S Groothuis-Oudshoorn K mice: multivariate imputation by chained equations in R Journal of Statistical Software 2011 45 3 1 67 10.18637/jss.v045.i03
  58. 58
    van Buuren S Groothuis-Oudshoorn K Roxitzsch A Vink G Doove L Jolani S Package ‘mice’ 2015 Available at: https://cran.r-project.org/web/packages/mice/mice.pdf [Last accessed November 30, 2016]
  59. 59
    von Hippel P T New confidence intervals and bias comparisons show that maximum likelihood can beat multiple imputation in small samples Structural Equation Modeling 2016 23 3 422 437 10.1080/10705511.2015.1047931
  60. 60
    Zhu J Raghunathan T E Convergence properties of a sequential regression multiple imputation algorithm Journal of the American Statistical Association 2015 110 511 1112 1124 10.1080/01621459.2014.948117
Language: English
Submitted on: Nov 30, 2016
Accepted on: Jun 23, 2017
Published on: Jul 28, 2017
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Masayoshi Takahashi, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.