Have a personal or library account? Click to login
Process Materials Scientific Data for Intelligent Service Using a Dataspace Model Cover

Process Materials Scientific Data for Intelligent Service Using a Dataspace Model

By: Yang Li and  Changjun Hu  
Open Access
|Jul 2016

Figures & Tables

Fig01_web.jpg
Figure 1

The basic structure of the relationships between subject, data sets, and services in VDS.

Fig02_web.jpg
Figure 2

The working principle of VDS in different stages.

Fig03_web.jpg
Figure 3

The user requirement model of VDS.

Table 1

The evolution algorithm of schema matching using the feedback instances.

Algorithm. RefineMappings (Map Mi, UFI instan)
Inputs Map: A set of candidate mappings
UFI: A set of user feedback instances
Outputs Map: A set of refined mappings
Begin
1If (Mi ≠ null){
2      S_Map = Mi;
3      O_Map;
4      Foreach OL ∈ S_Map {
5            If (OL ≠ null)
6                {Add <OL, OG> To O_Map}
7      }
8      AnnotateMappings(O_Map, UFI);
9      C_Map = CombineMappings(O_Map);
10      Return C_Map;
11}
End
Table 2

Characteristics comparison between VDS and traditional data management methods.

Traditional databaseSemantic data integrationVDS
Data objectData in relational databaseAll dataAll data
Data modeRelational model (Schema-First)Ontology model (Schema-First)Multiple models (Schema-Later)
Data typeStructured data (tables)Structured data, Semi-structured data, Non-structured dataStructured data, Semi-structured data, Non-structured data
Data sourceSingle source, isomorphismMulti-source, heterogeneousMulti-source, heterogeneous
Data associationSimple association, structural stabilityComplex association, structure is relatively stableComplex association, dynamic evolution
SemanticWithout semanticPre-established semantic informationGradually improved semantic information
Quality of data accessAccurate and complete resultsAccurate and complete resultsCurrently optimal results (Best-effort)
Construction and servicesFirst building, after use (Pay-before-you-go)First building, after use (Pay-before-you-go)Construction and optimisation with use (Pay-as-you-go)
Table 3

The model comparison of dataspaces.

Model comparisoniDM (ETH Zürich)UDM (University of Washington)P-DM (Stanford University)T-DM (Carleton University)CSM (Renmin University of China)VDM (USTB)
Data sourceCentralised, heterogeneous dataCentralised, heterogeneous dataDistributed, heterogeneous dataDistributed, heterogeneous dataCentralised, heterogeneous dataDistributed, heterogeneous data
Model structureBased on the graphBased on the sort treeBased on the probability modeBased on the RDFBased on the graphBased on the ontology
Integration approachOnly databaseDatabase, information extractionData integrationRDFAssociation rulesSemantic integration
Applicable fieldPersonal Information Management (PIM)Personal Information Management (PIM)Not involved in the specific application areasNot involved in the specific application areasPersonal Information Management (PIM)The field of materials engineering
UncertaintyDoes not supportDoes not supportSupportDoes not supportDoes not supportSupport
Subject featureDoes not considerDoes not considerDoes not considerDoes not considerIndividual users as the coreUsers in material field as the core
ApplicabilityGood query performance, and support the semanticQuery interfaceSupport the top-k sorting query resultsThe processing capability of query language is strongSupport the multi-faceted semantic queriesDiversified query strategy and strong semantic support
Table 4

The comparison of MatVDS and other dataspace systems in the initialisation phase.

Prototype systemData typeLocation of data sourceIntegration modelType of schema integrationProcessing of schema integrationEndpoints of schema matchingProcessing procedure of mapping
MatVDSStructured (stru), semi-structured (semi), unstructured (unst)Local, distributedProprietary modelUnion, mergeAutomatic, manualSource mode (sour) and integrated mode (inte)Automatic
OrientSpacestru, semi, unstLocalProprietary modelAutomaticAutomatic
SEMEXstru, semi, unstLocal, distributedProprietary modelMergeManualsour & inteAutomatic
iMeMexstru, semi, unstDistributedProprietary modelUnionAutomaticsour & sourSemi-automatic
PayGostruDistributedProprietary modelUnionAutomaticsour & sourAutomatic
UDIstruLocalProprietary modelMergeAutomaticsour & sour, sour & inteAutomatic
RoombaUniversal modelUnionAutomaticsour & sourAutomatic
QuarrysemiLocalUniversal modelUnionAutomatic
CimplestruDistributedProprietary modelMergeManualsour & sour, sour & inteSemi-automatic
CopyCatstru, semiDistributedProprietary modelUnionSemi-automaticsour & sourSemi-automatic
Octopusstru, semiDistributedProprietary modelMergeSemi-automaticsour & inteSemi-automatic
Table 5

The comparison of MatVDS and other dataspace systems in the use phase.

Prototype systemUser interest and behaviourLoadQuery typeQuery result
MatVDSConsider the user interests and behaviour habitsPre-integrated, and dynamic evolutionKeyword query, structured query, visualisation queryUnion
OrientSpaceConsider the behaviour characteristics and habitsDynamic evolutionKeyword query, structured queryUnion
SEMEXDoes not considerRun-time integrationKeyword query, structured queryMerge
iMeMexDoes not considerRun-time integrationKeyword query, structured queryUnion
PayGoDoes not considerRun-time integrationKeyword queryUnion
UDIDoes not considerRun-time integrationStructured queryMerge
RoombaDoes not considerPre-integratedKeyword query, structured queryMerge
QuarryDoes not considerRun-time integrationStructured queryUnion
CimpleDoes not considerRun-time integrationKeyword query, structured queryMerge
CopyCatDoes not considerPre-integratedVisualisation queryUnion
OctopusDoes not considerPre-integratedKeyword queryMerge
Table 6

The evolutionary comparison of MatVDS and other dataspace systems.

Prototype systemUse outputEvolution methodEvolution processing
MatVDSSort results, browsing, sourcesA variety of user feedback instances, explicit and implicitMatching and mapping, the user requirement model
OrientSpaceSort results, browsing, sourcesUser behaviour, implicitCore dataspace, task space, associated information
SEMEXResults, browsing
iMeMexResults, browsing, sources
PayGoSort resultsUser feedback, explicitSorting query results
UDISort results
RoombaResultsUser feedback, explicitMatching
QuarryResults, browsingUser feedback, explicitMatching
CimpleSort results, browsingUser feedback, explicitMatching
CopyCatResults, sourcesUser feedback, explicitIntegration mode, mapping
OctopusResultsUser feedback, explicitIntegration mode, mapping
Fig04_web.jpg
Figure 4

The system architecture of MatVDS.

Fig05_web.jpg
Figure 5

The collection of intelligent services in MatVDS.

Fig06_web.jpg
Figure 6

The demand-oriented data service instance in MatVDS.

Language: English
Submitted on: Apr 28, 2016
Accepted on: Jun 2, 2016
Published on: Jul 8, 2016
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Yang Li, Changjun Hu, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.