References
- 1 Cai, J.P., Cottis, R.A., & Lyon, S.B. (1999) Phenomenological modelling of atmospheric corrosion using an artificial neural network. Corrosion Science 41, pp 2001–2030.
- 2 Carpenter, W.C. & Hoffman, M.E. (1995) Training Backprop Neural Networks. Journal of AI Expert 10, pp 30–33.
- 3 Deng, J.L. (1989) Grey information space. The Journal of Grey System 1, pp 103–117.
- 4 Huwang, L.C. & Hwang, J.T.G. (2002) Prediction and confidence intervals for nonlinear measurement error models without identifiability information. Statistics & Probability Letters 58, pp 355–362.
- 5 Jurečková, J. & Picek, J. (2007) Shapiro–Wilk-type test of normality under nuisance regression and scale. Computational Statistics & Data Analysis 51, pp 5184–5191.
- 6 Melchers, R.E. (2013) Long-term corrosion of cast irons and steel in marine and atmospheric environments. Corrosion Science 68, pp 186–194.
- 7 Morcillo, M., Chico, B., Díaz, I., Cano, H., & Fuente, D. (2013) Atmospheric corrosion data of weathering steels. A review. Corrosion Science 77, pp 6–24.
- 8 Schröer, G. & Trenkler, D. (1995) Exact and randomization distributions of Kolmogorov-Smirnov tests two or three samples. Computational Statistics & Data Analysis 20, pp 185–202.
- 9 Shifler, D.A. (2005) Understanding material interactions in marine environments to promote extended structural life. Corrosion Science 47, pp 2335–2352.
- 10 Srivastava, M.S. & Hui, T.K. (1987) On assessing multivariate normality based on Shapiro-Wilk W statistic. Statistics & Probability Letters 5, pp 15–18.
- 11 Traverso, P. & Canepa, E. (2014) A review of studies on corrosion of metals and alloys in deep-sea environment. Ocean Engineering 87, pp 10–15.
- 12 Vlček, O. & Huth, R. (2009) Is daily precipitation Gamma-distributed?: Adverse effects of an incorrect use of the Kolmogorov–Smirnov test. Atmospheric Research 93, pp 759–766.
- 13 Wall, F.D., Martinez, M.A., Missert, N.A., Copeland, R.G., & Kilgo, A.C. (2005) Characterizing corrosion behavior under atmospheric conditions using electrochemical techniques. Corrosion Science 47, pp 17–32.
- 14 Wang, H.T., Han, E.H., & Ke, W. (2006) Artificial neural network modeling for atmospheric corrosion of carbon steel and low alloy steel. Corrosion Science and Protection Technology 18, pp 144–147.
- 15 Wang, H.T., Han, E.H., & Ke, W. (2006) Gray model and gray relation analysis for atmospheric corrosion of carbon steel and low alloy steel. Corrosion Science and Protection Technology 18, pp 278–280.
- 16 Xiao, Y.D., Liang, C.F., Zheng, Q.F., Hu, X.J., Wang, L., Zhang, E.P., et al. (2002) “Nine five” data collection of atmospheric corrosion of materials, The Major Program of the National Natural Science Foundation of China (No. 59899141).
- 17 Zhang, X.Z. (1994) Application of probability weighted moments to estimate parameters in Weibull distribution. Marine Forecast 11, pp 55–61.
- 18 Zhu, X.K. & Joyce, J.A. (2012) Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Engineering Fracture Mechanics 85, pp 1–46.
- 19 Zhu, X.R., Lin, L.Y., Zhang, S.P., Liu, D.Y., Lin, Z.J, Jin, W.X, et al. (2002) “Nine five” data collection of marine corrosion of materials, The Major Program of the National Natural Science Foundation of China (No. 59899142).
