Have a personal or library account? Click to login
A Personalization-Oriented Academic Literature Recommendation Method Cover

A Personalization-Oriented Academic Literature Recommendation Method

Open Access
|May 2015

References

  1. 1 Adomavicius, G. & Tuzhilin, A. (2005) Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions. IEEE Tran. Knowledge and Data Engineering 17(6), pp 734–749.
  2. 2 Andersen, R., Borgs, C., Chayes, J., et al. (2008) Trust-based Recommendation Systems: an Axiomatic Approach. Proc. of WWW, NY, USA, pp 199–208.
  3. 3 Arwar, B., Karypls, G., & Konstan, J. (2001) Item-based Collabrative Filtering Recommendation Algorithms. Proc. of the 10th International World Wide Web Conference, Hong Kong, China, pp 285–295.
  4. 4 Balabanovic, M. & Shoham, Y. (1997) Fab: Content-based, Collaborative Recommendation. Communication of the ACM 40(3), pp 66–72.
  5. 5 Chen, P., Xie, H., Maslov, S., & Redner, J. (2007) Finding Scientific Gems with Google’s PageRank Algorithm. Journal of Informetrics 1(1), pp 8–15.
  6. 6 Hill, W., Stead, L. Rosenstein, M., & Firnas, G. (1995) Recommending and Evaluating Choices in a Virtual Community of Use. Proc. Conf. Human Factors in Computing Systems, Denver, Colorado, USA.
  7. 7 Jarvelin, K. & Kekalainen, J. (2002) Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20(4), pp 422–446.
  8. 8 Liang, S., Liu, Y., Jian, L., et al. (2011) A Utility-based Recommendation Approach for Academic Literatures. IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Lyon, France.
  9. 9 Lin, W.Y., Alvarez, S.A., & Ruiz, C. (2000) Collaborative Recommendation via Adaptive Association Rule Mining. Proc. of International Workshop on Web Mining for E-Commerce, Boston, MA, USA.
  10. 10 McLaughlin, M. R. & Herlocker, J. L. (2004) A collaborative filtering algorithm and evaluation metric that accurately model the user experience. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Sheffield, UK. pp 329–336.
  11. 11 McNee, S. M., Albert, I., Cosley, D., et al., (2002) On the Recommending of Citations for Research Papers, Proc. of CSCW, New Orleans, Louisiana, USA, pp 116–125.
  12. 12 Opricovic, S. & Tzeng, G. H. (2004) Compromise Solution by MCDM Methds: a ComparativeAanalysis of VIKOR and TOPSIS. European Journal of Operational Research 156(2), pp 445–455.
  13. 13 Rocchio, J. J. (1971) Relevance feedback in information retrieval. In Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing. Prentice-Hall Series in Automatic Computation, pp 313–323.
  14. 14 Salton, G. & Buckley, C. (1988) Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), pp 513–523.
  15. 15 Sayyadi, H. & Getoor, L. (2009) Ranking Scientific Articles by Predicting their Future PageRank. Proc. of the 9th SIAM International Conference on Data Mining, Sparks, Nevada, USA.
  16. 16 Torres, R., McNee, S. M., Abel, M., et al., (2004) Enhancing Digital Libraries with TechLens. Proc. of the 4th ACM/IEEE Joint Conference on Digital Libraries,. Tucson, Arizona, USA.
  17. 17 Widrow, A. & Hoff, M. (1960) Adaptive Switch Circuits. Institute of Radio Engineers, Western Electronic Show and Convention, Convention Record, pp 96–104.
Language: English
Published on: May 22, 2015
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Zhongya Wang, Ying Liu, Jiajun Yang, Zheng Zheng, Kaichao Wu, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.