Have a personal or library account? Click to login
The Challenges of Data Quality and Data Quality Assessment in the Big Data Era Cover

The Challenges of Data Quality and Data Quality Assessment in the Big Data Era

By: Li Cai and  Yangyong Zhu  
Open Access
|May 2015

References

  1. Alan, F. K., Sanil, A. P., Sacks, J., et al. (2001) Workshop Report: Affiliates Workshop on Data Quality, North Carolina: NISS.
  2. Alexander, J. E., & Tate, M. A. Web wisdom: How to evaluate and create information on the web, Mahwah, NJ: Erlbaum.
  3. Cao, J. J., Diao, X. C., Wang, T., et al. (2010) Research on Some Basic Problems in Data Quality Control. Microcomputer Information 09, pp 12–14.
  4. Cappiello, C., Francalanci, C., & Pernici, B. (2004) Data quality assessment from user‘s perspective. Procedures of the 2004 International Workshop on Information Quality in Information Systems, New York: ACM, pp 78–73.
  5. Crosby, P. B. (1988) Quality is Free: The Art of Making Quality Certain, New York: McGraw-Hill.
  6. Data Application Environment Construction and Service of Chinese Academy of Sciences (2009) Data Quality Evaluation Method and Index System. Retrieved October 30, 2013 from the World Wide Web: http://www.csdb.cn/upload/101205/1012052021536150.pdf
  7. Demchenko, Y., Grosso, P., de Laat, C., et al. (2013) Addressing Big Data Issues in Scientific Data Infrastructure. Procedures of the 2013 International Conference on Collaboration Technologies and Systems, California: ACM, pp 48–55.
  8. Feng, Z. Y., Guo, X. H., Zeng, D. J., et al. (2013) On the research frontiers of business management in the context of Big Data. Journal of Management Sciences in China 16(01), pp 1–9.
  9. Gantz, J., & Reinsel, D. (2012) THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. Retrieved February, 2013 from the World Wide Web: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-western-europe.pdf
  10. General Administration of Quality Supervision (2008) Inspection and Quarantine of the People’s Republic of China. Quality management systems-Fundamentals and vocabulary (GB/T19000—2008/ISO9000:2005), Beijing.
  11. Katal, A., Wazid, M., & Goudar, R. (2013) Big Data: Issues, Challenges, Tools and Good Practices. Procedures of the 2013 Sixth International Conference on Contemporary Computing, Noida: IEEE, pp 404–409.
  12. Katerattanakul, P., & Siau, K. (1999) Measuring information quality of web sites: Development of an instrument. Procedures of the 20th International Conference on Information Systems, North Carolina: ACM, pp 279–285.
  13. Knight, S., & Burn, J. (2005) Developing a Framework for Assessing Information Quality on the World Wide Web. Information Science Journal 18, pp 159–171.
  14. Li, G. J., & Chen, X. Q. (2012) Research Status and Scientific Thinking of Big Data. Bulletin of Chinese Academy of Sciences 27(06), pp 648–657.
  15. Li, J. Z., & Liu, X. M. (2013) An Important Aspect of Big Data: Data Usability. Journal of Computer Research and Development 50(6), pp 1147–1162.
  16. McGilvray, D. (2008) Executing Data Quality Projects: Ten Steps to Quality Data and Trusted Information, California: Morgan Kaufmann.
  17. McGilvray, D. (2010) Executing Data Quality Projects: Ten Steps to Quality Data and Trusted Information, Beijing: Publishing House of Electronics Industry.
  18. Meng, X. F., & Ci, X. (2013) Big Data Management: Concepts, Techniques and Challenges. Journal of Computer Research and Development 50(1), pp 146–169.
  19. Nature (2008) Big Data. Retrieved November 5, 2013 from the World Wide Web: http://www.nature.com/news/specials/bigdata/index.html
  20. Science (2011) Special online collection: Dealing with data. Retrieved November 5, 2013 from the World Wide Web: http://www.sciencemag.org/site/special/data/
  21. Shankaranarayanan, G., Ziad, M., & Wang, R. Y. (2012) Preliminary Study on Data Quality Assessment for Socialized Media. China Science and Technology Resources 44(2), pp 72–79.
  22. Shanks, G., & Corbitt, B. (1999) Understanding data quality: Social and cultural aspects. Procedures of the 10th Australasian Conference on Information Systems, Wellington: MCB University Press Ltd., pp 785–797.
  23. Silberschatz, A., Korth, H., & Sudarshan, S. (2006) Database System Concepts, Beijing: Higher Education Press.
  24. Song, M., & Qin, Z. (2007) Reviews of Foreign Studies on Data Quality Management. Journal of Information 2, pp 7–9.
  25. Wang, H., & Zhu, W. M. (2007) Quality of Audit Data: A Perspective of Evidence. Journal of Nanjing University (Natural Sciences) 43(1), pp 29–34.
  26. Wang, J. L., Li, H., & Wang, Q. (2010) Research on ISO 8000 Series Standards for Data Quality. Standard Science 12, pp 44–46.
  27. Wang, R., & Storey, V. (1995) Framework for Analysis of Quality Research. IEEE Transactions on Knowledge and Data Engineering 1(4), pp 623–637.
  28. Wang, R. Y., & Strong, D. M. (1996) Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems 12(4), pp 5–33.
  29. Wang, Y. F., Zhang, C. Z., Zhang, B. B., et al. (2007) A Survey of Data Cleaning. New Technology of Library and Information Service 12, pp 50–56.
  30. Zhu, X., & Gauch, S. (2000) Incorporating quality metrics in centralized/distributed information retrieval on the World Wide Web. Procedures of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Athens: ACM, pp 288–295.
  31. Zhu, Y. Y., & Xiong, Y. (2009) Datology and Data Science, Shanghai: Fudan University Press.
  32. Zong, W., & Wu, F.(2013) The Challenge of Data Quality in the Big Data Age. Journal of Xi’an Jiaotong University (Social Sciences) 33(5), pp 38–43.
Language: English
Published on: May 22, 2015
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Li Cai, Yangyong Zhu, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.