Have a personal or library account? Click to login
iNaturalist Users Exhibit Distinct Spatiotemporal Sampling Preferences, with Implications for Biodiversity Science and Project Planning Cover

iNaturalist Users Exhibit Distinct Spatiotemporal Sampling Preferences, with Implications for Biodiversity Science and Project Planning

Open Access
|Jan 2026

References

  1. Aronson, M.F.J., La Sorte, F.A., Nilon, C.H., Katti, M., Goddard, M.A., Lepczyk, C.A., Warren, P.S. et al. (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133330. 10.1098/rspb.2013.3330
  2. August, T., Fox, R., Roy, D.B., and Pocock, M.J.O. (2020) Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias. Scientific Reports, 10(1), Article 1. 10.1038/s41598-020-67658-3
  3. Baker, R.S. (2020) Why is the American South Poorer? Social Forces, Volume 99, Issue 1, Pages 126154, 10.1093/sf/soz149
  4. Barrett, T., Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., Hocking, T., Schwendinger, B. et al. (2025) data.table: Extension of ‘data.frame’. R package version 1.17.0, <https://CRAN.R-project.org/package=data.table>
  5. Barve, V.V., Brenskelle, L., Li, D., Stucky, B.J., Barve, N.V., Hantak, M.M., McLean, B.S. et al. (2020) Methods for broad-scale plant phenology assessments using citizen scientists’ photographs. Applications in Plant Sciences, 8(1). 10.1002/aps3.11315
  6. Barve, V. and Hart, E. (2022). rinat: Access ‘iNaturalist’ Data Through APIs. R package version 0.1.9, <https://CRAN.R-project.org/package=rinat>
  7. Bedessem, B., Gawrońska-Nowak, B., and Lis, P. (2021) Can citizen science increase trust in research? A case study of delineating Polish metropolitan areas. Journal of Contemporary European Research, 17(2). 10.30950/jcer.v17i2.1185
  8. Boakes, E.H., Gliozzo, G., Seymour, V., Harvey, M., Smith, C., Roy, D.B., and Hakley, M. (2016) Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Scientific Reports 6, 33051 10.1038/srep33051
  9. Botts, E.A., Erasmus, B.F.N., and Alexander, G.J. (2011) Geographic sampling bias in the South African Frog Atlas Project: Implications for conservation planning. Biodiversity and Conservation, 20(1), 119139. 10.1007/s10531-010-9950-6
  10. Bowler, D.E., Bhandari, N., Repke, L., Beuthner, C., Callaghan, C.T., Eichenberg, D., Henle, K. et al. (2022) Decision-making of citizen scientists when recording species observations. Scientific Reports, 12(1), Article 1. 10.1038/s41598-022-15218-2
  11. Bowser, A., Hansen, D., Preece, J., He, Y., Boston, C., and Hammock, J. (2014) Gamifying Citizen Science: A Study of Two User Groups. In Proceedings of the Companion Publication of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, Baltimore, MD, USA, Association for Computing Machinery: New York, NY, USA, 2014; pp. 137140. 10.1145/2556420.2556502
  12. Butler, B.J. and Wear, D.N. (2013). Forest ownership dynamics of southern forests. In D.N. Wear and J.G. Greis (Eds.), The Southern Forest Futures Project: Technical report (pp. 103121). U.S. Department of Agriculture, Forest Service, Southern Research Station.
  13. Callaghan, C.T., Bino, G., Major, R.E., Martin, J.M., Lyons, M.B., and Kingsford, R.T. (2019) Heterogeneous urban green areas are bird diversity hotspots: Insights using continental-scale citizen science data. Landscape Ecology, 34(6), 12311246. 10.1007/s10980-019-00851-6
  14. Callaghan, C.T., Ozeroff, I., Hitchcock, C., and Chandler, M. (2020) Capitalizing on opportunistic citizen science data to monitor urban biodiversity: A multi-taxa framework. Biological Conservation, 251, 108753. 10.1016/j.biocon.2020.108753
  15. Callaghan, C.T., Thompson, M., Woods, A., Poore, A.G.B., Bowler, D.E., Samonte, F., Rowley, J.J.L. et al. (2023) Experimental evidence that behavioral nudges in citizen science projects can improve biodiversity data. BioScience, 73(4), 302313. 10.1093/biosci/biad012
  16. Callaghan, C.T., Winnebald, C., Smith, B., Mason, B.M., and López-Hoffman, L. (2025) Citizen science as a valuable tool for environmental review. Frontiers in Ecology and the Environment, 23(1), e2808. 10.1002/fee.2808
  17. Campbell, C.J., Barve, V., Belitz, M.W., Doby, J.R., White, E., Seltzer, C., Di Cecco, G. et al. (2023) Identifying the identifiers: How iNaturalist facilitates collaborative, research-relevant data generation and why it matters for biodiversity science. BioScience, 73(7), 533541. 10.1093/biosci/biad051
  18. Carlen, E.J., Estien, C.O., Caspi, T., Perkins, D., Goldstein, B.R., Kreling, S.E.S., Hentati, Y. et al. (2024) A framework for contextualizing social-ecological biases in contributory science data. People and Nature, 6(2), 377390. 10.1002/pan3.10592
  19. Courter, J.R., Johnson, R.J., Stuyck, C.M., Lang, B.A., and Kaiser, E.W. (2013) Weekend bias in Citizen Science data reporting: implications for phenology studies. International Journal of Biometeorology, 57(5), 71520. doi: 10.1007/s00484-012-0598-7. Epub 2012
  20. Crimmins, T.M., Posthumus, E., Schaffer, S., and Prudic, K.L. (2021) COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. ScienceDirect, 256, 109017. 10.1016/j.biocon.2021.109017
  21. Davis, A.K., Nibbelink, N., and Deneka, C.J. (2022). Revisiting geographic variation in melanism of monarch butterfly larvae in North America using iNaturalist photos. Journal of Thermal Biology, 110, 103374. 10.1016/j.jtherbio.2022.103374
  22. Deitsch, J., Chuang, A., Nelsen, D., Sitvarin, M., and Coyle, D. (2024) Quantifying how natural history traits contribute to bias in community science engagement: A case study using orbweaver spiders. Citizen Science: Theory and Practice, 9(1). 10.5334/cstp.690
  23. Di Cecco, G.J., Barve, V., Belitz, M.W., Stucky, B.J., Guralnick, R.P. and Hurlbert, A.H. (2021) Observing the observers: How participants contribute data to iNaturalist and implications for biodiversity science. BioScience, 71(11), 11791188. 10.1093/biosci/biab093
  24. Dimson, M. and Gillespie, T.W. (2023) Who, where, when: Observer behavior influences spatial and temporal patterns of iNaturalist participation. Applied Geography, 153, 102916. 10.1016/j.apgeog.2023.102916
  25. Dowthwaite, L., Spence, A., Lintott, C., Miller, G., Sprinks, J., Blickhan, S., and Houghton, R. (2025) Exploring the relationship between basic psychological needs and motivation in online citizen science. Transactions on Social Computing, 8, 12, Article 4. 10.1145/3702210
  26. Ellis-Soto, D., Chapman, M., and Locke, D.H. (2023) Historical redlining is associated with increasing geographical disparities in bird biodiversity sampling in the United States. Nature Human Behaviour, 7(11), 18691877. 10.1038/s41562-023-01688-5
  27. Estien, C.O., Carlen, E.J., and Schell, C.J. (2024) Examining the influence of sociodemographics, residential segregation, and historical redlining on eBird and iNaturalist data disparities in three U.S. cities. Ecology and Society, 29(3), 16. 10.5751/ES-15263-290316
  28. Fogg-Rogers, L., Sardo, A.M., Csobod, E., Boushel, C., Laggan, S., and Hayes, E. (2024) Citizen-led emissions reduction: Enhancing enjoyment and understanding for diverse citizen engagement with air pollution and climate change decision making. Environmental Science & Policy, 154, 103692. 10.1016/j.envsci.2024.103692
  29. Fourcade, Y. (2016) Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecological Informatics, 36, 814. 10.1016/j.ecoinf.2016.09.002
  30. Grolemund, G. and Wickham, H. (2011) Dates and Times Made Easy with lubridate. Journal of Statistical Software, 40(3), 125. URL https://www.jstatsoft.org/v40/i03/.
  31. Hart, A., Adcock, D., Barr, M., Church, S., Clegg, T., Copland, S., De Meyer, K., et al. (2022) Understanding engagement, marketing, and motivation to benefit recruitment and retention in citizen science. Citizen Science: Theory and Practice, 7(1). Available at: 10.5334/cstp.436
  32. Hijmans, R. (2024) _terra: Spatial Data Analysis_. R package version 1.778, <https://CRAN.R-project.org/package=terra>.
  33. iNaturalist. (2025) Observations. https://www.inaturalist.org/observations. Accessed: April 23, 2025
  34. Larson, L.R., Cooper, C.B., Futch, S., Singh, D., Shipley, N.J., Dale, K., LeBaron, G.S. et al. (2020) The diverse motivations of citizen scientists: Does conservation emphasis grow as volunteer participation progresses? Biological Conservation, 242, 108428. 10.1016/j.biocon.2020.108428
  35. Lee, T.K., Crowston, K., Harandi, M., Østerlund, C., and Miller, G. (2018) Appealing to different motivations in a message to recruit citizen scientists: Results of a field experiment. Journal of Science Communication, 17(01), A02. 10.22323/2.17010202
  36. Leong, M., Dunn, R.R., and Trautwein, M.D. (2018) Biodiversity and socioeconomics in the city: a review of the luxury effect. Biology Letters, 14(5). 10.1098/rsbl.2018.0082
  37. Li, D., Barve, N., Brenskelle, L., Earl, K., Barve, V., Belitz, M.W., and Doby, J. et al. (2021) Climate, urbanization, and species traits interactively drive flowering duration. Global Change Biology, 27: 892903. 10.1111/gcb.15461
  38. López-Guillén, E., Herrera, I., Bensid, B., Gómez-Bellver, C., Ibáñez, N., Jiménez-Mejías, P., Mairal, M. et al. (2024). Strengths and challenges of using iNaturalist in plant research with focus on data quality. Diversity, 16(1), 42. 10.3390/d16010042
  39. Lowe, K.L., Mason, B.M., Guralnick, R., Morales, N.A., and Callaghan, C.T. (2025) Participant intensity influences motivations for contributing to iNaturalist. Citizen Science Theory and Practice, 10(1), p.25. 10.5334/cstp.823.
  40. Moon, K., Yates, S., Callaghan, C.T., and Thompson, M. (2024). The relational nature of citizen science. People and Nature, 6, 20602076. 10.1002/pan3.10709
  41. Noss, R.F., Platt, W.J., Sorrie, B.A., Weakley, A.S., Means, D.B., Costanza, J., and Peet, R.K. (2015) How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions, 21: 236244. 10.1111/ddi.12278
  42. Overdevest, C., Orr, C.H., and Stepenuck, K. (2004) Volunteer stream monitoring and local participation in natural resource issues. Human Ecology Review, 11(2), 177185.
  43. Pebesma, E. and Bivand, R. (2023) Spatial Data Science: With Applications in R. Chapman and Hall/CRC. 10.1201/9780429459016
  44. Pernat, N., Memedemin, D., August, T., Preda, C., Reyserhove, L., Schirmel, J., and Groom, Q. (2024) Extracting secondary data from citizen science images reveals host flower preferences of the Mexican grass-carrying wasp Isodontia mexicana in its native and introduced ranges. Ecology and Evolution, 14, e11537. 10.1002/ece3.11537
  45. Pocock, M.J.O., Hamlin, I., Christelow, J., Passmore, H.A., and Richardson, M. (2023a) The benefits of citizen science and nature-noticing activities for well-being, nature connectedness and pro-nature conservation behaviours. People and Nature, 5, 591606. 10.1002/pan3.10432
  46. Pocock, M.J.O., Logie, M., Isaac, N.J.B., Fox, R., and August, T. (2023b) The recording behaviour of field-based citizen scientists and its impact on biodiversity trend analysis. Ecological Indicators, 151, 110276. 10.1016/j.ecolind.2023.110276
  47. R Core Team. (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  48. Robinson, J.A., Kocman, D., Speyer, O., and Gerasopoulos, E. (2021) Meeting volunteer expectations — a review of volunteer motivations in citizen science and best practices for their retention through implementation of functional features in CS tools. Journal of Environmental Planning and Management, 64(12). 10.1080/09640568.2020.1853507
  49. Rosenblatt, C.J., Dayer, A.A., Duberstein, J.N., Phillips, T.B., Harshaw, H.W., Fulton, D.C., Cole, N.W. et al. (2022) Highly specialized recreationists contribute the most to the citizen science project eBird. Ornithological Applications, 124(2), duac008. 10.1093/ornithapp/duac008
  50. Rotman, D., Hammock, J., Preece, J., Hansen, D., Boston, C., Bowser, A. and He, Y. (2014) Motivations Affecting Initial and Long-Term Participation in Citizen Science Projects in Three Countries. iConference 2014 Proceedings. 10.9776/14054
  51. Rowley, J.J.L., Callaghan, C.T., Cutajar, T., Portway, C., Potter, K., Mahony, S., Trembath, D.F., et al. (2019). FrogID: Citizen scientists provide validated biodiversity data on frogs of Australia. Herpetological Conservation and Biology, 14:1, 155170.
  52. Skarlatidou, A., Moreu, M., and Haklay, M. (2024) The utilization of maps in geographic citizen science: A preliminary analysis of usability and user experience issues and opportunities. Annals of the American Association of Geographers, 115(2), 316333. 10.1080/24694452.2024.2426714
  53. Thompson, M.M., Moon, K., Woods, A., Rowley, J.J.L., Poore, A.G.B., Kingsford, R.T. and Callaghan, C.T. (2023) Citizen science participant motivations and behaviour: Implications for biodiversity data coverage. Biological Conservation, 282, 110079. 10.1016/j.biocon.2023.110079
  54. Tredennick, A.T., Hooker, G., Ellner, S.P., and Adler, P.B. (2021) A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology 102(6):e03336. 10.1002/ecy.3336
  55. Trust for Public Land. (2024) U.S. ParkServe Dataset. https://www.tpl.org/park-data-downloads
  56. U.S. Census Bureau. (2020) TIGER/Line Shapefiles, Nation, U.S., 2020 Census Urban Area. https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.
  57. U.S. Census Bureau. (2022) American Community Survey (ACS) 5-Year Estimates, 2016–2020: Tables B17020 and B19113.
  58. U.S. Geological Survey (USGS). (2022) Protected Areas Database of the United States (PAD-US) 3.0. 10.5066/P9Q9LQ4B.
  59. U.S. Geological Survey (USGS). (2023) Annual NLCD Collection 1 Science Products. 10.5066/P94UXNTS
  60. Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0–387–95457-0. 10.1007/978-0-387-21706-2
  61. Visit Florida Research, https://www.visitflorida.org/resources/research/. Accessed Sept. 2025
  62. West, S.E., Pateman, R.M., and Dyke, A. (2021) Variations in the motivations of environmental citizen scientists. Citizen Science: Theory and Practice, 6(1), p.14. 10.5334/cstp.370
  63. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G. et al. (2019) Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. doi: 10.21105/joss.01686
  64. Wood, C., Sullivan, B., Iliff, M., Fink, D., and Kelling, S. (2011) eBird: Engaging birders in science and conservation. PLOS Biology, 9(12), e1001220. 10.1371/journal.pbio.1001220
DOI: https://doi.org/10.5334/cstp.868 | Journal eISSN: 2057-4991
Language: English
Submitted on: May 1, 2025
|
Accepted on: Jan 1, 2026
|
Published on: Jan 29, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Erin L. Grady, Caitlin J. Campbell, Corey T. Callaghan, Robert P. Guralnick, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.