Have a personal or library account? Click to login
Human Supervision is Key to Achieving Accurate AI-assisted Wildlife Identifications in Camera Trap Images Cover

Human Supervision is Key to Achieving Accurate AI-assisted Wildlife Identifications in Camera Trap Images

Open Access
|Dec 2024

References

  1. 1Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2016) {TensorFlow}: A System for {Large-Scale} Machine Learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265283.
  2. 2Ackerman, S., Dube, P., Farchi, E., Raz, O., Zalmanovici, M. (2021). Machine Learning Model Drift Detection Via Weak Data Slices. In: 2021 IEEE/ACM Third International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest)., pp. 18. DOI: 10.1109/DeepTest52559.2021.00007
  3. 3Ahumada, J.A. and Fegraus, E. (2019) Wildlife Insights: A platform to process, manage, analyze, understand and share biodiversity information from in-situ passive sensors. In: AGU Fall Meeting Abstracts (Vol. 2019, pp. B13 A-05 W).
  4. 4Anderson, T.M., White, S., Davis, B., Erhardt, R., Palmer, M., Swanson, A., Kosmala, M., et al. (2016). The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), p. 20150314. DOI: 10.1098/rstb.2015.0314
  5. 5Battu, T., Reddy Lakshmi, D.S. (2023). Animal image identification and classification using deep neural networks techniques. Measurement: Sensors 25, p. 100611. DOI: 10.1016/j.measen.2022.100611
  6. 6Beery, S., Morris, D., Yang, S. (2019). Efficient Pipeline for Camera Trap Image Review. arXiv preprint arXiv:1907.06772. DOI: 10.48550/arXiv.1907.06772
  7. 7Beery, S., Van Horn, G., Perona, P. (2018). Recognition in Terra Incognita. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 456473. DOI: 10.1007/978-3-030-01270-0_28
  8. 8Bonebrake, T.C., Brown, C.J., Bell, J.D., Blanchard, J.L., Chauvenet, A., Champion, C., Chen, I.-C., et al. (2018) Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 93(1), pp. 284305. DOI: 10.1111/brv.12344
  9. 9Borowiec, M.L., Dikow, R.B., Frandsen, P.B., McKeeken, A., Valentini, G., White, A.E. (2022) Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 13(8), pp. 16401660. DOI: 10.1111/2041-210X.13901
  10. 10Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., et al. (2015) Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52(3), pp. 675685. DOI: 10.1111/1365-2664.12432
  11. 11Caravaggi, A., Burton, A.C., Clark, D.A., Fisher, J.T., Grass, A., Green, S., Hobaiter, C., et al. (2020) A review of factors to consider when using camera traps to study animal behavior to inform wildlife ecology and conservation. Conservation Science and Practice 2(8), p. e239. DOI: 10.1111/csp2.239
  12. 12Ceballos, G., Ehrlich, P.R. and Dirzo, R. (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the national academy of sciences, 114(30), pp. E6089E6096. DOI: 10.1073/pnas.170494911
  13. 13Clarfeld, L.A., Sirén, A.P.K., Mulhall, B.M., Wilson, T.L., Bernier, E., Farrell, J., Lunde, G., et al. (2023) Evaluating a tandem human-machine approach to labelling of wildlife in remote camera monitoring. Ecological Informatics, 77, p. 102257. DOI: 10.1016/j.ecoinf.2023.102257
  14. 14Davis, R.S., Gentle, L.K., Mgoola, W.O., Stone, E.L., Uzal, A., Yarnell, R.W. (2023) Using camera trap bycatch data to assess habitat use and the influence of human activity on African elephants (Loxodonta africana) in Kasungu National Park, Malawi. Mammalian Biology, 103, pp. 121132. DOI: 10.1007/s42991-022-00330-7
  15. 15Farley, S.S., Dawson, A., Goring, S.J., Williams, J.W., 2018. Situating ecology as a big-data science: current advances, challenges, and solutions. BioScience, 68(8), pp. 563576. DOI: 10.1093/biosci/biy068
  16. 16Gadsden, G.I., Malhotra, R., Schell, J., Carey, T., Harris, N.C. (2021) Michigan ZoomIN: Validating crowd-sourcing to identify mammals from camera surveys. Wildlife Society Bulletin, 45(2), pp. 221229. DOI: 10.1002/wsb.1175
  17. 17He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770778. DOI: 10.1109/CVPR.2016.90
  18. 18Hofmeester, T.R., Young, S., Juthberg, S., Singh, N.J., Widemo, F., Andrén, H., Linnell, et al. (2020) Using by-catch data from wildlife surveys to quantify climatic parameters and timing of phenology for plants and animals using camera traps. Remote Sensing in Ecology and Conservation, 6(2), pp. 129140. DOI: 10.1002/rse2.136
  19. 19Hsing, P.-Y., Bradley, S., Kent, V.T., Hill, R.A., Smith, G.C., Whittingham, M.J., Cokill, J., et al. (2018) Economical crowdsourcing for camera trap image classification. Remote Sensing in Ecology and Conservation 4(4), pp. 361374. DOI: 10.1002/rse2.84
  20. 20Islam, S.B. and Valles, D. (2020) Identification of wild species in Texas from camera-trap images using deep neural network for conservation monitoring. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). pp. 05370542. IEEE DOI: 10.1109/CCWC47524.2020.9031190
  21. 21Jones, F.M., Allen, C., Arteta, C., Arthur, J., Black, C., Emmerson, L.M., Freeman, R., et al. (2018) Time-lapse imagery and volunteer classifications from the Zooniverse Penguin Watch project. Scientific Data, 5(1), pp. 113. DOI: 10.1038/sdata.2018.124
  22. 22Kays, R., Tilak, S., Kranstauber, B., Jansen, P.A., Carbone, C., Rowcliffe, M.J., Fountain, T., et al. (2010) Monitoring wild animal communities with arrays of motion sensitive camera traps. arXiv preprint arXiv:1009.5718. DOI: 10.48550/arXiv.1009.5718
  23. 23Laporte-Devylder, L., Ulvund, K.R., Rød-Eriksen, L., Olsson, O., Flagstad, Ø., Landa, A., Eide, N.E., et al. (2023) A camera trap-based assessment of climate-driven phenotypic plasticity of seasonal moulting in an endangered carnivore. Remote Sensing in Ecology and Conservation, 9(2), pp. 210221. DOI: 10.1002/rse2.304
  24. 24Liu, L., Mou, C., and Xu, F. (2024) Improved Wildlife Recognition through Fusing Camera Trap Images and Temporal Metadata. Diversity, 16(3), p. 139. DOI: 10.3390/d16030139
  25. 25Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N., Clune, J., 2021. A deep active learning system for species identification and counting in camera trap images. Methods in Ecology and Evolution, 12(1), pp. 150161. DOI: 10.1111/2041-210X.13504
  26. 26Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M., Packer, C., and Clune, J. (2017) Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, 115(25), E5716E5725. DOI: 10.1073/pnas.1719367115
  27. 27Miao, Z., Liu, Z., Gaynor, K.M., Palmer, M.S., Yu, S.X. and Getz, W.M. (2021) Iterative human and automated identification of wildlife images. Nature Machine Intelligence, 3(10), pp. 885895. DOI: 10.1038/s42256-021-00393-0
  28. 28Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E.M., Butchart, S.H.M., Kovacs, K.M., Scheffers, B.R., et al. (2015) Assessing species vulnerability to climate change. Nature Climate Change, 5(3), pp. 215224. DOI: 10.1038/nclimate2448
  29. 29Palmer, M., Huebner, S., Willi, Marco, C., Fortson, L., and Packer, C. (2021) Citizen science, computing, and conservation: how can “ Crowd AI ” change the way we tackle large-scale ecological challenges? Human Computation, 8(2), pp. 5475. DOI: 10.15346/hc.v8i2.123
  30. 30Palmer, M.S., Gaynor, K.M., Becker, J.A., Abraham, J.O., Mumma, M.A., and Pringle, R.M, (2022) Dynamic landscapes of fear: understanding spatiotemporal risk. Trends in Ecology & Evolution, 37(10), pp. 911925. DOI: 10.1016/j.tree.2022.06.007
  31. 31Pantazis, O., Bevan, P., Pringle, H., Ferreira, G.B., Ingram, D.J., Madsen, E., Thomas, L., et al. (2024) Deep learning-based ecological analysis of camera trap images is impacted by training data quality and size. arXiv preprint arXiv:2408.14348. DOI: 10.48550/arXiv.2408.14348
  32. 32Pardo, L.E., Bombaci, S., Huebner, S.E., Somers, M.J., Fritz, H., Downs, C., … and Venter, J.A. (2021) Snapshot Safari: A large-scale collaborative to monitor Africa’s remarkable biodiversity. South African Journal of Science, 117(1–2), pp. 14. DOI: 10.17159/sajs.2021/8134
  33. 33Schlaepfer, M.A. and Lawler, J.J. (2023) Conserving biodiversity in the face of rapid climate change requires a shift in priorities. Wiley Interdisciplinary Reviews: Climate Change, 14(1), p. e798. DOI: 10.1002/wcc.798
  34. 34Schneider, S., Greenberg, S., Taylor, G.W. and Kremer, S.C. (2020) Three critical factors affecting automated image species recognition performance for camera traps. Ecology and Evolution, 10(7), pp. 35033517. DOI: 10.1002/ece3.6147
  35. 35Shahinfar, S., Meek, P. and Falzon, G. (2020) “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecological Informatics, 57, p. 101085. DOI: 10.1016/j.ecoinf.2020.101085
  36. 36Simpson, R., Page, K.R. and De Roure, D. (2014) Zooniverse: observing the world’s largest citizen science platform. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 10491054. DOI: 10.1145/2567948.2579215
  37. 37Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J.T., Burton, C., … and Rich, L.N. (2017) Scaling-up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 15(1), pp. 2634. DOI: 10.1002/fee.1448
  38. 38Swanson, A., Kosmala, M., Lintott, C. and Packer, C. (2016) A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conservation Biology, 30(3), pp. 520531. DOI: 10.1111/cobi.12695
  39. 39Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A. and Packer, C. (2015) Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Scientific data, 2(1), pp. 114. DOI: 10.1038/sdata.2015.26
  40. 40Trouille, L., Lintott, C.J. and Fortson, L.F. (2019) Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human–machine systems. Proceedings of the National Academy of Sciences, 116(6), pp. 19021909. DOI: 10.1073/pnas.1807190116
  41. 41Vélez, J., McShea, W., Shamon, H., Castiblanco-Camacho, P.J., Tabak, M.A., Chalmers, C., Fergus, P., et al. (2023) An evaluation of platforms for processing camera-trap data using artificial intelligence. Methods in Ecology and Evolution, 14(2), pp. 459477. DOI: 10.1111/2041-210X.14044
  42. 42Villa, A.G., Salazar, A. and Vargas, F. (2017) Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks. Ecological Informatics 41, pp. 2432. DOI: 10.1016/j.ecoinf.2017.07.004
  43. 43Westworth, S.O.A., Chalmers, C., Fergus, P., Longmore, S.N., Piel, A.K. and Wich, S.A. (2022) Understanding external influences on target detection and classification using camera trap images and machine learning. Sensors, 22(14), p. 5386. DOI: 10.3390/s22145386
  44. 44Wevers, J., Beenaerts, N., Casaer, J., Zimmermann, F., Artois, T. and Fattebert, J. (2021) Modelling species distribution from camera trap by-catch using a scale-optimized occupancy approach. Remote Sensing in Ecology and Conservation, 7(3), pp. 534549. DOI: 10.1002/rse2.207
  45. 45Whytock, R.C., wieewski, J., Zwerts, J.A., Bara-Słupski, T., Koumba Pambo, A.F., Rogala, M., Bahaa-el-din, L., Boekee, K., et al. (2021) Robust ecological analysis of camera trap data labelled by a machine learning model. Methods in Ecology and Evolution, 12(6), pp. 10801092. DOI: 10.1111/2041-210X.13576
  46. 46Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., et al. (2019) Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecology and Evolution, 10(1), pp. 8091. DOI: 10.1111/2041-210X.13099
DOI: https://doi.org/10.5334/cstp.752 | Journal eISSN: 2057-4991
Language: English
Submitted on: Mar 10, 2024
Accepted on: Oct 7, 2024
Published on: Dec 9, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Sarah E. Huebner, Meredith S. Palmer, Craig Packer, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.