References
- 1Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2016) {TensorFlow}: A System for {Large-Scale} Machine Learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283.
- 2Ackerman, S., Dube, P., Farchi, E., Raz, O., Zalmanovici, M. (2021). Machine Learning Model Drift Detection Via Weak Data Slices. In: 2021 IEEE/ACM Third International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest)., pp. 1–8. DOI: 10.1109/DeepTest52559.2021.00007
- 3Ahumada, J.A. and Fegraus, E. (2019) Wildlife Insights: A platform to process, manage, analyze, understand and share biodiversity information from in-situ passive sensors. In: AGU Fall Meeting Abstracts (Vol. 2019, pp. B13 A-05 W).
- 4Anderson, T.M., White, S., Davis, B., Erhardt, R., Palmer, M., Swanson, A., Kosmala, M., et al. (2016). The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), p.
20150314 . DOI: 10.1098/rstb.2015.0314 - 5Battu, T., Reddy Lakshmi, D.S. (2023). Animal image identification and classification using deep neural networks techniques. Measurement: Sensors 25, p.
100611 . DOI: 10.1016/j.measen.2022.100611 - 6Beery, S., Morris, D., Yang, S. (2019). Efficient Pipeline for Camera Trap Image Review. arXiv preprint arXiv:1907.06772. DOI: 10.48550/arXiv.1907.06772
- 7Beery, S., Van Horn, G., Perona, P. (2018). Recognition in Terra Incognita. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 456–473. DOI: 10.1007/978-3-030-01270-0_28
- 8Bonebrake, T.C., Brown, C.J., Bell, J.D., Blanchard, J.L., Chauvenet, A., Champion, C., Chen, I.-C., et al. (2018) Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 93(1), pp. 284–305. DOI: 10.1111/brv.12344
- 9Borowiec, M.L., Dikow, R.B., Frandsen, P.B., McKeeken, A., Valentini, G., White, A.E. (2022) Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 13(8), pp. 1640–1660. DOI: 10.1111/2041-210X.13901
- 10Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., et al. (2015) Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52(3), pp. 675–685. DOI: 10.1111/1365-2664.12432
- 11Caravaggi, A., Burton, A.C., Clark, D.A., Fisher, J.T., Grass, A., Green, S., Hobaiter, C., et al. (2020) A review of factors to consider when using camera traps to study animal behavior to inform wildlife ecology and conservation. Conservation Science and Practice 2(8), p.
e239 . DOI: 10.1111/csp2.239 - 12Ceballos, G., Ehrlich, P.R. and Dirzo, R. (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the national academy of sciences, 114(30), pp. E6089–E6096. DOI: 10.1073/pnas.170494911
- 13Clarfeld, L.A., Sirén, A.P.K., Mulhall, B.M., Wilson, T.L., Bernier, E., Farrell, J., Lunde, G., et al. (2023) Evaluating a tandem human-machine approach to labelling of wildlife in remote camera monitoring. Ecological Informatics, 77, p.
102257 . DOI: 10.1016/j.ecoinf.2023.102257 - 14Davis, R.S., Gentle, L.K., Mgoola, W.O., Stone, E.L., Uzal, A., Yarnell, R.W. (2023) Using camera trap bycatch data to assess habitat use and the influence of human activity on African elephants (Loxodonta africana) in Kasungu National Park, Malawi. Mammalian Biology, 103, pp. 121–132. DOI: 10.1007/s42991-022-00330-7
- 15Farley, S.S., Dawson, A., Goring, S.J., Williams, J.W., 2018. Situating ecology as a big-data science: current advances, challenges, and solutions. BioScience, 68(8), pp. 563–576. DOI: 10.1093/biosci/biy068
- 16Gadsden, G.I., Malhotra, R., Schell, J., Carey, T., Harris, N.C. (2021) Michigan ZoomIN: Validating crowd-sourcing to identify mammals from camera surveys. Wildlife Society Bulletin, 45(2), pp. 221–229. DOI: 10.1002/wsb.1175
- 17He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. DOI: 10.1109/CVPR.2016.90
- 18Hofmeester, T.R., Young, S., Juthberg, S., Singh, N.J., Widemo, F., Andrén, H., Linnell, et al. (2020) Using by-catch data from wildlife surveys to quantify climatic parameters and timing of phenology for plants and animals using camera traps. Remote Sensing in Ecology and Conservation, 6(2), pp. 129–140. DOI: 10.1002/rse2.136
- 19Hsing, P.-Y., Bradley, S., Kent, V.T., Hill, R.A., Smith, G.C., Whittingham, M.J., Cokill, J., et al. (2018) Economical crowdsourcing for camera trap image classification. Remote Sensing in Ecology and Conservation 4(4), pp. 361–374. DOI: 10.1002/rse2.84
- 20Islam, S.B. and Valles, D. (2020) Identification of wild species in Texas from camera-trap images using deep neural network for conservation monitoring. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). pp. 0537–0542.
IEEE DOI: 10.1109/CCWC47524.2020.9031190 - 21Jones, F.M., Allen, C., Arteta, C., Arthur, J., Black, C., Emmerson, L.M., Freeman, R., et al. (2018) Time-lapse imagery and volunteer classifications from the Zooniverse Penguin Watch project. Scientific Data, 5(1), pp. 1–13. DOI: 10.1038/sdata.2018.124
- 22Kays, R., Tilak, S., Kranstauber, B., Jansen, P.A., Carbone, C., Rowcliffe, M.J., Fountain, T., et al. (2010) Monitoring wild animal communities with arrays of motion sensitive camera traps. arXiv preprint arXiv:1009.5718. DOI: 10.48550/arXiv.1009.5718
- 23Laporte-Devylder, L., Ulvund, K.R., Rød-Eriksen, L., Olsson, O., Flagstad, Ø., Landa, A., Eide, N.E., et al. (2023) A camera trap-based assessment of climate-driven phenotypic plasticity of seasonal moulting in an endangered carnivore. Remote Sensing in Ecology and Conservation, 9(2), pp. 210–221. DOI: 10.1002/rse2.304
- 24Liu, L., Mou, C., and Xu, F. (2024) Improved Wildlife Recognition through Fusing Camera Trap Images and Temporal Metadata. Diversity, 16(3), p. 139. DOI: 10.3390/d16030139
- 25Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N., Clune, J., 2021. A deep active learning system for species identification and counting in camera trap images. Methods in Ecology and Evolution, 12(1), pp. 150–161. DOI: 10.1111/2041-210X.13504
- 26Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M., Packer, C., and Clune, J. (2017) Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, 115(25), E5716–E5725. DOI: 10.1073/pnas.1719367115
- 27Miao, Z., Liu, Z., Gaynor, K.M., Palmer, M.S., Yu, S.X. and Getz, W.M. (2021) Iterative human and automated identification of wildlife images. Nature Machine Intelligence, 3(10), pp. 885–895. DOI: 10.1038/s42256-021-00393-0
- 28Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E.M., Butchart, S.H.M., Kovacs, K.M., Scheffers, B.R., et al. (2015) Assessing species vulnerability to climate change. Nature Climate Change, 5(3), pp. 215–224. DOI: 10.1038/nclimate2448
- 29Palmer, M., Huebner, S., Willi, Marco, C., Fortson, L., and Packer, C. (2021) Citizen science, computing, and conservation: how can “ Crowd AI ” change the way we tackle large-scale ecological challenges? Human Computation, 8(2), pp. 54–75. DOI: 10.15346/hc.v8i2.123
- 30Palmer, M.S., Gaynor, K.M., Becker, J.A., Abraham, J.O., Mumma, M.A., and Pringle, R.M, (2022) Dynamic landscapes of fear: understanding spatiotemporal risk. Trends in Ecology & Evolution, 37(10), pp. 911–925. DOI: 10.1016/j.tree.2022.06.007
- 31Pantazis, O., Bevan, P., Pringle, H., Ferreira, G.B., Ingram, D.J., Madsen, E., Thomas, L., et al. (2024) Deep learning-based ecological analysis of camera trap images is impacted by training data quality and size. arXiv preprint arXiv:2408.14348. DOI: 10.48550/arXiv.2408.14348
- 32Pardo, L.E., Bombaci, S., Huebner, S.E., Somers, M.J., Fritz, H., Downs, C., … and Venter, J.A. (2021) Snapshot Safari: A large-scale collaborative to monitor Africa’s remarkable biodiversity. South African Journal of Science, 117(1–2), pp. 1–4. DOI: 10.17159/sajs.2021/8134
- 33Schlaepfer, M.A. and Lawler, J.J. (2023) Conserving biodiversity in the face of rapid climate change requires a shift in priorities. Wiley Interdisciplinary Reviews: Climate Change, 14(1), p.
e798 . DOI: 10.1002/wcc.798 - 34Schneider, S., Greenberg, S., Taylor, G.W. and Kremer, S.C. (2020) Three critical factors affecting automated image species recognition performance for camera traps. Ecology and Evolution, 10(7), pp. 3503–3517. DOI: 10.1002/ece3.6147
- 35Shahinfar, S., Meek, P. and Falzon, G. (2020) “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecological Informatics, 57, p.
101085 . DOI: 10.1016/j.ecoinf.2020.101085 - 36Simpson, R., Page, K.R. and De Roure, D. (2014) Zooniverse: observing the world’s largest citizen science platform. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 1049–1054. DOI: 10.1145/2567948.2579215
- 37Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J.T., Burton, C., … and Rich, L.N. (2017) Scaling-up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 15(1), pp. 26–34. DOI: 10.1002/fee.1448
- 38Swanson, A., Kosmala, M., Lintott, C. and Packer, C. (2016) A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conservation Biology, 30(3), pp. 520–531. DOI: 10.1111/cobi.12695
- 39Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A. and Packer, C. (2015) Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Scientific data, 2(1), pp. 1–14. DOI: 10.1038/sdata.2015.26
- 40Trouille, L., Lintott, C.J. and Fortson, L.F. (2019) Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human–machine systems. Proceedings of the National Academy of Sciences, 116(6), pp. 1902–1909. DOI: 10.1073/pnas.1807190116
- 41Vélez, J., McShea, W., Shamon, H., Castiblanco-Camacho, P.J., Tabak, M.A., Chalmers, C., Fergus, P., et al. (2023) An evaluation of platforms for processing camera-trap data using artificial intelligence. Methods in Ecology and Evolution, 14(2), pp. 459–477. DOI: 10.1111/2041-210X.14044
- 42Villa, A.G., Salazar, A. and Vargas, F. (2017) Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks. Ecological Informatics 41, pp. 24–32. DOI: 10.1016/j.ecoinf.2017.07.004
- 43Westworth, S.O.A., Chalmers, C., Fergus, P., Longmore, S.N., Piel, A.K. and Wich, S.A. (2022) Understanding external influences on target detection and classification using camera trap images and machine learning. Sensors, 22(14), p.
5386 . DOI: 10.3390/s22145386 - 44Wevers, J., Beenaerts, N., Casaer, J., Zimmermann, F., Artois, T. and Fattebert, J. (2021) Modelling species distribution from camera trap by-catch using a scale-optimized occupancy approach. Remote Sensing in Ecology and Conservation, 7(3), pp. 534–549. DOI: 10.1002/rse2.207
- 45Whytock, R.C., wieewski, J., Zwerts, J.A., Bara-Słupski, T., Koumba Pambo, A.F., Rogala, M., Bahaa-el-din, L., Boekee, K., et al. (2021) Robust ecological analysis of camera trap data labelled by a machine learning model. Methods in Ecology and Evolution, 12(6), pp. 1080–1092. DOI: 10.1111/2041-210X.13576
- 46Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., et al. (2019) Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecology and Evolution, 10(1), pp. 80–91. DOI: 10.1111/2041-210X.13099
