Have a personal or library account? Click to login
GLOBE Observer: A Case Study in Advancing Earth System Knowledge with AI-Powered Citizen Science Cover

GLOBE Observer: A Case Study in Advancing Earth System Knowledge with AI-Powered Citizen Science

Open Access
|Dec 2024

References

  1. 1Ahmed, A., Irish, S.R., Zohdy, S., Yoshimizu, M. and Tadesse, F.G. (2022) Strategies for conducting Anopheles stephensi surveys in non-endemic areas. Acta Tropica, 236, pp.106671. DOI: 10.1016/j.actatropica.2022.106671
  2. 2AI Crowd and the Mosquito Alert Team. (2023) MosquitoAlert 2023: Small object detection and classification challenge. Available at https://www.aicrowd.com/challenges/mosquitoalert-challenge-2023. [Last accessed 12 September 2024].
  3. 3Amazon. (2024) Amazon Rekognition. Available at https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html [Last accessed 18 September 2024].
  4. 4Amos, H.M., Starke, M.J., Rogerson, T.M., Colón Robles, M., Andersen, T., Boger, R., Campbell, B.A., et al. (2020) GLOBE Observer Data: 2016–2019. Earth and Space Science, 7(8), pp. 2020EA001175. DOI: 10.1029/2020EA001175
  5. 5Aristeidou, M., Herodotou, C., Ballard, H.L., Young, A.N., Miller, A.E., Higgins, L. and Johnson, R.F. (2021) Exploring the participation of young citizen scientists in scientific research: The case of iNaturalist. PLOS ONE, 16(1). pp. e0245682. DOI: 10.1371/journal.pone.0245682
  6. 6Azam, F.B., Carney, R.M., Kariev, S., Nallan, K., Subramanian, M., et al. (2023) Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniques. Scientific Reports, 13(1), pp. 22130. DOI: 10.1038/s41598-023-47266-7
  7. 7Berenguer-Agullo, A., Rodriguez-Juan, J., Ortiz-Perez, D. and Garcia-Rodriguez, J. (2024) Lightweight CNNs for Advanced Bird Species Recognition on the Edge. Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds), Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. DOI: 10.1007/978-3-031-61137-7_10
  8. 8Berti Suman, A., & Alblas, E. (2023) Exploring citizen science over time: Sensing, technology and the law. Sustainability, 15(5), pp. 4496. DOI: 10.3390/su15054496
  9. 9Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V. and Shirk, J. (2009) Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience, 59(11), pp. 977984. DOI: 10.1525/bio.2009.59.11.9
  10. 10Bowser, A., Shilton, K., Preece, J. and Warrick, E. (2017) Accounting for Privacy in Citizen Science. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. Portland, OR on 25 February- 1 March 2017, pp. 21242136. DOI: 10.1145/2998181.2998305
  11. 11Campbell, C. J., Barve, V., Belitz, M. W., Doby, J. R., White, E., Seltzer, C., Di Cecco, G., et al. (2023) Identifying the identifiers: How iNaturalist facilitates collaborative, research-relevant data generation and why it matters for biodiversity science. BioScience, 73(7), pp. 533541. DOI: 10.1093/biosci/biad051
  12. 12Carney, R.M., Long, A., Low, R.D., Zohdy, S., John, Elias, P., Bartumeus, F., Njoroge, L., et al. (2023) Citizen Science as an Approach for Responding to the Threat of Anopheles stephensi in Africa. Citizen Science: Theory and Practice, 8(1), pp. 60. DOI: 10.5334/cstp.616
  13. 13Carney, R.M., Mapes, C., Low, R.D., Long, A., Bowser, A., Durieux, D., Rivera, K., et al. (2022) Integrating Global Citizen Science Platforms to Enable Next-Generation Surveillance of Invasive and Vector Mosquitoes. Insects, 13(8), pp. 675. DOI: 10.3390/insects13080675
  14. 14Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L. and Oliver, J.L. (2019) Opportunities and Risks for Citizen Science in the Age of Artificial Intelligence. Citizen Science: Theory and Practice, 4(1), pp. 29. DOI: 10.5334/cstp.241
  15. 15de Mesquita, R. G., Ren, T. I., Mello, C. A., & Silva, M. L. (2024) Street pavement classification based on navigation through street view imagery. AI & Society, 39(3), pp.10091025. DOI: 10.1007/s00146-022-01520-0
  16. 16de Sherbinin, A., Bowser, A., Chuang, T.R., Cooper, C., Danielsen, F., Edmunds, R., et al. (2021) The critical importance of citizen science data. Frontiers in Climate, 3, pp. 650760. DOI: 10.3389/fclim.2021.650760
  17. 17Eveleigh, A, Jennett, C, Blandford, A, Brohan, P and Cox, AL. (2014) Designing for dabblers and deterring drop-outs in citizen science. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, CA on 26 April- 1 May 2014, pp. 29852994. DOI: 10.1145/2556288.2557262
  18. 18Fischer, H., Cho, H. and Storksdieck, M. (2021) Going Beyond Hooked Participants: The Nibble-and-Drop Framework for Classifying Citizen Science Participation. Citizen Science: Theory and Practice, 6(1), pp.10. DOI: 10.5334/cstp.350
  19. 19Flowers, V., Frutos, C., MacKenzie, A.S., Fanning, R. and Fraser, E.E. (2023) Snap Decisions: Assessing Participation and Data Quality in a Citizen Science Program Using Repeat Photography. Citizen Science: Theory and Practice, 8(1), pp. 62. DOI: 10.5334/cstp.558
  20. 20Foody, G., Long, G., Schultz, M. and Olteanu-Raimond, A.M. (2024) Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project. Geo-spatial Information Science, 27(1), pp.1637. DOI: 10.1080/10095020.2022.2100285
  21. 21Fritz, S., See, L., Carlson, T., Haklay, M., Oliver, J.L., Fraisl, D., Mondardini, R., et al. (2019) Citizen science and the United Nations Sustainable Development Goals. Nature Sustainability, 2(10), pp. 922930. DOI: 10.1038/s41893-019-0390-3
  22. 22Geoghegan, H, Dyke, A, Pateman, R, West, S and Everett, G. (2016) Understanding motivations for citizen science. Final report on behalf of UKEOF, University of Reading, Stockholm Environment Institute (University of York) and University of the West of England.
  23. 23Global Learning and Observations to Benefit the Environment Program (GLOBE) (2024a) Available at https://www.globe.gov. [Last accessed 16 September 2024].
  24. 24Global Learning and Observations to Benefit the Environment Program (GLOBE) (2024b) Available at https://observer.globe.gov/get-data. [Last accessed 16 September 2024].
  25. 25He, K., Zhang, X., Ren, S. and Sun, J. (2018) Deep residual learning for image recognition. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) Conference on Computer Vision and Pattern Recognition, Taichung, Taiwan on 30 November – 02 December 2018, pp. 770778. Available at https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf [Last accessed 12 September 2024]. DOI: 10.1109/CVPR.2016.90
  26. 26Hoffmann, E. J., Wang, Y., Werner, M., Kang, J., & Zhu, X. X. (2019) Model fusion for building type classification from aerial and street view images. Remote Sensing, 11(11), pp. 1259. DOI: 10.1109/MGRS.2022.3219584
  27. 27Huang, L.P., Hong, M.H., Luo, C.H., Mahajan, S. and Chen, L.J. (2018) A vector mosquitoes classification system based on edge computing and deep learning. In: 2018 Conference on Technologies and Applications of Artificial Intelligence, Taichung, Taiwan on 30 November – 02 December 2018, pp. 2427. DOI: 10.1109/TAAI.2018.00015
  28. 28Huang, X., Yang, D., He, Y., Nelson, P., Low, R., McBride, S., Mitchell, J., et al. (2023) Land cover mapping via crowditalicd multi-directional views: The more directional views, the better. International Journal of Applied Earth Observation and Geoinformation, 122, pp.103382103382. DOI: 10.1016/j.jag.2023.103382
  29. 29Janowicz, K., Gao, S., McKenzie, G., Hu, Y. and Bhaduri, B. (2019) GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), pp. 625636. DOI: 10.1080/13658816.2019.1684500
  30. 30Kohl, H. (2024) (personal communication, 26 February 2024).
  31. 31Kohl, H. A., Nelson, P. V., Pring, J., Weaver, K. L., Wiley, D. M., Danielson, A. B., Cooper, R. M., et al. (2021). GLOBE observer and the GO on a trail data challenge: a citizen science approach to generating a global land cover land use reference dataset. Frontiers in Climate, 3, pp. 620497. DOI: 10.3389/fclim.2021.620497
  32. 32Kottmann, R., Kyba, C., Piera, J., Radicchi, A., Schade, S. and Sturm, U. (2018) Developing mobile applications for environmental and biodiversity citizen science: considerations and recommendations. Joly A., Vrochidis S., Karatzas K., Karppinen A., Bonnet P. (eds). Multimedia Tools and Applications for Environmental & Biodiversity Informatics. Cham: Springer. pp. 930. Available at https://pure.iiasa.ac.at/id/eprint/15975/1/AAM.pdf [Last accessed 7 June 2024]. DOI: 10.1007/978-3-319-76445-0_2
  33. 33Laso Bayas, J.C., See, L., Georgieva, I., Schepaschenko, D., Danylo, O., Dürauer, M., Bartl, H., et al. (2022) Drivers of tropical forest loss between 2008 and 2019. Scientific Data, 9(1), pp.146. DOI: 10.1038/s41597-022-01227-3
  34. 34Li, W., & Hsu, C. Y. (2022) GeoAI for large-scale image analysis and machine vision: recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), pp. 385. DOI: 10.3390/ijgi11070385
  35. 35Liu, P., & Biljecki, F. (2022) A review of spatially-explicit GeoAI applications in Urban Geography. International Journal of Applied Earth Observation and Geoinformation, 112, pp.102936. DOI: 10.1016/j.jag.2022.102936
  36. 36Low, R.D., Schwerin, T.G., Boger, R.A., Soeffing, C., Nelson, P.V., Bartlett, D., Ingle, P., et al. (2022) Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper. Insects, 13(7), pp. 624. DOI: 10.3390/insects13070624
  37. 37Luna, S., Gold, M., Albert, A., Ceccaroni, L., Claramunt, B., Danylo, O., Haklay, M., et al. (2018) Developing mobile applications for environmental and biodiversity citizen science: considerations and recommendations. In: Joly A, Vrochidis S, Karatzas K, Karppinen A, and Bonnet P. Multimedia Tools and Applications for Environmental & Biodiversity Informatics. Cham: Springer. pp. 930. Available at https://pure.iiasa.ac.at/id/eprint/15975/1/AAM.pdf [Last accessed 7 June 2024]. DOI: 10.1007/978-3-319-76445-0_2
  38. 38Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G. and Johnson, B.A. (2019) Deep learning in remote sensing applications: A meta-analysis and review. ISPRS journal of photogrammetry and remote sensing, 152, pp.166177. DOI: 10.1016/j.isprsjprs.2019.04.015
  39. 39Manzanarez, S., Manian, V. and Santos, M. (2022) Land Use Land Cover Labeling of GLOBE Images Using a Deep Learning Fusion Model. Sensors, 22, pp. 6895. DOI: 10.3390/s22186895
  40. 40McClure, E.C., Sievers, M., Brown, C.J., Buelow, C.A., Ditria, E.M., Hayes, M.A. and Connolly, R.M. (2020) Artificial intelligence meets citizen science to supercharge ecological monitoring. Patterns, 1(7), pp.100109. DOI: 10.1016/j.patter.2020.100109
  41. 41Minakshi, M., Bharti, P., McClinton, W.B. III, Mirzakhalov, J., Carney, R.M. and Chellappan, S. (2020) Automating the surveillance of mosquito vectors from trapped specimens using computer vision techniques. Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, Ecuador, on June 15 – 17 2020, pp. 105115. DOI: 10.1145/3378393.3402260
  42. 42MLCommons (2024) New Croissant metadata format helps standardize ML datasets. Available at https://mlcommons.org/2024/03/croissant_metadata_announce/ [Last accessed 10 June 2024].
  43. 43Muñoz, J.P., Boger, R., Dexter, S., Low, R. and Li, J. (2018) Image Recognition of Disease-Carrying Insects: A System for Combating Infectious Diseases Using Image Classification Techniques and Citizen Science. Hawaiian https://scholarspace.manoa.hawaii.edu/items/e71e0b41-a181-4366-942f-00ff3623a783International Conference on System Sciences, Manoa, HI, on January 3–6, 2018. Available at [Last accessed 14 October 2024].
  44. 44Muñoz, J.P., Boger, R., Dexter, S. and Low, R. (2019) Mosquitoes and Public Health: Improving Data Validation of Citizen Science Contributions Using Computer Vision. Healthcare delivery in the information. Wickramasinghe, N and Bodendorf, F (eds.) Delivering Superior Health and Wellness Management with IoT and Analytics Age. Cham: Springer. pp. 469493. DOI: 10.1007/978-3-030-17347-0_23
  45. 45Perger, C., LeDrew, E., See, L., and Fritz, S. (2014) Geography Geo-Wiki in the classroom: Using crowdsourcing to enhance geographical teaching. Future Internet, 6(4), pp. 597611. DOI: 10.3390/fi6040597
  46. 46Ren, S., He, K., Girshick, R., and Sun, J. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 11371149. DOI: 10.1109/TPAMI.2016.2577031
  47. 47Schacher, A., Roger, E., Williams, K.J., Stenson, M.P., Sparrow, B. and Lacey, J. (2023) Use-specific considerations for optimising data quality trade-offs in citizen science: recommendations from a targeted literature review to improve the usability and utility for the calibration and validation of remotely sensed products. Remote Sensing, 15(5), pp.1407. DOI: 10.3390/rs15051407
  48. 48Shinde, R. and Koehl, D. (2024) Introducing Croissant: A format for machine learning datasets. Available at https://www.earthdata.nasa.gov/learn/blog/introducing-croissant-format-machine-learning-datasets [Last Accessed 9 June 2024].
  49. 49Shirk, J.L., Ballard, H.L., Wilderman, C.C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., et al. (2012) Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2), pp. 29. DOI: 10.5751/ES-04705-170229
  50. 50Simpson, R., Page, K.R. and De Roure, D. (2014) Zooniverse: observing the world’s largest citizen science platform. In Proceedings of the 23rd international Conference on World Wide Web (pp. 10491054). DOI: 10.1145/2567948.2579215
  51. 51Singh, D. and Arora, D. (2024) Cloud-Based Object Detection Model Using Amazon Rekognition. Roy, N R, Tanwar, S, Batra, U (eds.) Cyber Security and Digital Forensics. REDCYSEC 2023. Lecture Notes in Networks and Systems, vol. 896, pp.165177. Springer: Singapore. DOI: 10.1007/978-981-99-9811-1_13
  52. 52Sinka, M.E., Pironon, S., Massey, N.C., Longbottom, J., Hemingway, J., Moyes, C.L. and Willis, K.J. (2020) A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. In: Proceedings of the National Academy of Sciences, 117(40), pp. 2490024908. DOI: 10.1073/pnas.2003976117
  53. 53Song, Y., Kalacska, M., Gašparović, M., Yao, J., and Najibi, N. (2023) Advances in geocomputation and geospatial artificial intelligence (GeoAI) for mapping. International Journal of Applied Earth Observation and Geoinformation, 120, pp.103300. DOI: 10.1016/j.jag.2023.103300
  54. 54Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., and Damoulas, T. (2014) The eBird enterprise: An integrated approach to development and application of citizen science. Biological conservation, 169, pp. 3140. DOI: 10.1016/j.biocon.2013.11.003
  55. 55Taskin, G., Aptoula, E. and Ertürk, A. (2024) Explainable AI for Earth observation: current methods, open challenges, and opportunities. In: Prasad, S, Chanyssot, J, and Li, J (eds.) Advances in Machine Learning and Image Analysis for GeoAI. Amsterdam: Elsevier. pp. 115152. DOI: 10.1016/B978-0-44-319077-3.00012-2
  56. 56Uelmen, J.A. Jr., Clark, A., Palmer, J., Kohler, J., Van Dyke, L.C., Low, R. and Carney, R.M. (2023) Global mosquito observations dashboard (GMOD): Creating a user-friendly web interface fueled by citizen science to monitor invasive and vector mosquitoes. International Journal of Health Geographics, 22(1), pp. 28. DOI: 10.1186/s12942-023-00350-7
  57. 57Velasco-Montero, D., Fernández-Berni, J., Carmona-Galán, R., Sanglas, A. and Palomares, F. (2024) Reliable and efficient integration of AI into camera traps for smart wildlife monitoring based on continual learning. Ecological Informatics, 83, pp.102815. DOI: 10.1016/j.ecoinf.2024.102815
  58. 58Wang, S., Huang, X., Liu, P., Zhang, M., Biljecki, F., Hu, T., Ge, Y., et al. (2024) Mapping the landscape and roadmap of geospatial artificial intelligence (GeoAI) in quantitative human geography: An extensive systematic review. International Journal of Applied Earth Observation and Geoinformation, 128, pp.103734. DOI: 10.1016/j.jag.2024.103734
  59. 59Yan, Y. and Ryu, Y. (2021) Exploring Google Street View with deep learning for crop type mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 171, pp. 278296. DOI: 10.1016/j.isprsjprs.2020.11.022
  60. 60Yang, D. and Huang, X. (2023) Seeing the World from All Angles: How Multi-View Crowdsourcing is Revolutionizing Land Cover Mapping. Available at https://observer.globe.gov/news-events-and-people/news/-/obsnewsdetail/19589576/seeing-the-world-from-all-angles-how-multi-view-crowdsourcing-is-revolutionizing-land-cover-mapping [Last accessed September 12, 2024].
  61. 61Zhang, K.; Leng, S., He, Y., Maharjan, S., and Zhang, Y. (2018) Mobile Edge Computing and Networking for Green and Low-Latency Internet of Things. IEEE Communications Magazine, 56, pp. 3945. DOI: 10.1109/MCOM.2018.1700882
  62. 62Zhao, K., Liu, Y., Hao, S., Lu, S., Liu, H., and Zhou, L. (2021) Bounding boxes are all we need: street view image classification via context encoding of detected buildings. IEEE Transactions on Geoscience and Remote Sensing, 60, pp. 117. DOI: 10.1109/TGRS.2021.3064316
DOI: https://doi.org/10.5334/cstp.747 | Journal eISSN: 2057-4991
Language: English
Submitted on: Mar 1, 2024
Accepted on: Oct 28, 2024
Published on: Dec 9, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Peder V. Nelson, Russanne Low, Holli Kohl, David Overoye, Di Yang, Xiao Huang, Sriram Chellappan, Farhat Binte Azam, Ryan M. Carney, Monika Falk, Joan Garriga, Larisa Schelkin, Rebecca Boger, Theresa Schwerin, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.