References
- 1Ahmed, A., Irish, S.R., Zohdy, S., Yoshimizu, M. and Tadesse, F.G. (2022) Strategies for conducting Anopheles stephensi surveys in non-endemic areas. Acta Tropica, 236, pp.106671. DOI: 10.1016/j.actatropica.2022.106671
- 2AI Crowd and the Mosquito Alert Team. (2023) MosquitoAlert 2023: Small object detection and classification challenge. Available at
https://www.aicrowd.com/challenges/mosquitoalert-challenge-2023 . [Last accessed 12 September 2024]. - 3Amazon. (2024) Amazon Rekognition. Available at
https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html [Last accessed 18 September 2024]. - 4Amos, H.M., Starke, M.J., Rogerson, T.M., Colón Robles, M., Andersen, T., Boger, R., Campbell, B.A., et al. (2020) GLOBE Observer Data: 2016–2019. Earth and Space Science, 7(8), pp. 2020EA001175. DOI: 10.1029/2020EA001175
- 5Aristeidou, M., Herodotou, C., Ballard, H.L., Young, A.N., Miller, A.E., Higgins, L. and Johnson, R.F. (2021) Exploring the participation of young citizen scientists in scientific research: The case of iNaturalist. PLOS ONE, 16(1). pp.
e0245682 . DOI: 10.1371/journal.pone.0245682 - 6Azam, F.B., Carney, R.M., Kariev, S., Nallan, K., Subramanian, M., et al. (2023) Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniques. Scientific Reports, 13(1), pp. 22130. DOI: 10.1038/s41598-023-47266-7
- 7Berenguer-Agullo, A., Rodriguez-Juan, J., Ortiz-Perez, D. and Garcia-Rodriguez, J. (2024)
Lightweight CNNs for Advanced Bird Species Recognition on the Edge . Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds), Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. DOI: 10.1007/978-3-031-61137-7_10 - 8Berti Suman, A., & Alblas, E. (2023) Exploring citizen science over time: Sensing, technology and the law. Sustainability, 15(5), pp. 4496. DOI: 10.3390/su15054496
- 9Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V. and Shirk, J. (2009) Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience, 59(11), pp. 977–984. DOI: 10.1525/bio.2009.59.11.9
- 10Bowser, A., Shilton, K., Preece, J. and Warrick, E. (2017) Accounting for Privacy in Citizen Science. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. Portland, OR on
25 February- 1 March 2017 , pp. 2124 – 2136. DOI: 10.1145/2998181.2998305 - 11Campbell, C. J., Barve, V., Belitz, M. W., Doby, J. R., White, E., Seltzer, C., Di Cecco, G., et al. (2023) Identifying the identifiers: How iNaturalist facilitates collaborative, research-relevant data generation and why it matters for biodiversity science. BioScience, 73(7), pp. 533–541. DOI: 10.1093/biosci/biad051
- 12Carney, R.M., Long, A., Low, R.D., Zohdy, S., John, Elias, P., Bartumeus, F., Njoroge, L., et al. (2023) Citizen Science as an Approach for Responding to the Threat of Anopheles stephensi in Africa. Citizen Science: Theory and Practice, 8(1), pp. 60. DOI: 10.5334/cstp.616
- 13Carney, R.M., Mapes, C., Low, R.D., Long, A., Bowser, A., Durieux, D., Rivera, K., et al. (2022) Integrating Global Citizen Science Platforms to Enable Next-Generation Surveillance of Invasive and Vector Mosquitoes. Insects, 13(8), pp. 675. DOI: 10.3390/insects13080675
- 14Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L. and Oliver, J.L. (2019) Opportunities and Risks for Citizen Science in the Age of Artificial Intelligence. Citizen Science: Theory and Practice, 4(1), pp. 29. DOI: 10.5334/cstp.241
- 15de Mesquita, R. G., Ren, T. I., Mello, C. A., & Silva, M. L. (2024) Street pavement classification based on navigation through street view imagery. AI & Society, 39(3), pp.1009–1025. DOI: 10.1007/s00146-022-01520-0
- 16de Sherbinin, A., Bowser, A., Chuang, T.R., Cooper, C., Danielsen, F., Edmunds, R., et al. (2021) The critical importance of citizen science data. Frontiers in Climate, 3, pp. 650760. DOI: 10.3389/fclim.2021.650760
- 17Eveleigh, A, Jennett, C, Blandford, A, Brohan, P and Cox, AL. (2014) Designing for dabblers and deterring drop-outs in citizen science. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, CA on
26 April- 1 May 2014 , pp. 2985–2994. DOI: 10.1145/2556288.2557262 - 18Fischer, H., Cho, H. and Storksdieck, M. (2021) Going Beyond Hooked Participants: The Nibble-and-Drop Framework for Classifying Citizen Science Participation. Citizen Science: Theory and Practice, 6(1), pp.10. DOI: 10.5334/cstp.350
- 19Flowers, V., Frutos, C., MacKenzie, A.S., Fanning, R. and Fraser, E.E. (2023) Snap Decisions: Assessing Participation and Data Quality in a Citizen Science Program Using Repeat Photography. Citizen Science: Theory and Practice, 8(1), pp. 62. DOI: 10.5334/cstp.558
- 20Foody, G., Long, G., Schultz, M. and Olteanu-Raimond, A.M. (2024) Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project. Geo-spatial Information Science, 27(1), pp.16–37. DOI: 10.1080/10095020.2022.2100285
- 21Fritz, S., See, L., Carlson, T., Haklay, M., Oliver, J.L., Fraisl, D., Mondardini, R., et al. (2019) Citizen science and the United Nations Sustainable Development Goals. Nature Sustainability, 2(10), pp. 922–930. DOI: 10.1038/s41893-019-0390-3
- 22Geoghegan, H, Dyke, A, Pateman, R, West, S and Everett, G. (2016) Understanding motivations for citizen science. Final report on behalf of UKEOF, University of Reading, Stockholm Environment Institute (University of York) and University of the West of England.
- 23Global Learning and Observations to Benefit the Environment Program (GLOBE) (2024a) Available at
https://www.globe.gov . [Last accessed 16 September 2024]. - 24Global Learning and Observations to Benefit the Environment Program (GLOBE) (2024b) Available at
https://observer.globe.gov/get-data . [Last accessed 16 September 2024]. - 25He, K., Zhang, X., Ren, S. and Sun, J. (2018) Deep residual learning for image recognition. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) Conference on Computer Vision and Pattern Recognition, Taichung, Taiwan on
30 November – 02 December 2018 , pp. 770–778. Available athttps://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf [Last accessed 12 September 2024]. DOI: 10.1109/CVPR.2016.90 - 26Hoffmann, E. J., Wang, Y., Werner, M., Kang, J., & Zhu, X. X. (2019) Model fusion for building type classification from aerial and street view images. Remote Sensing, 11(11), pp. 1259. DOI: 10.1109/MGRS.2022.3219584
- 27Huang, L.P., Hong, M.H., Luo, C.H., Mahajan, S. and Chen, L.J. (2018) A vector mosquitoes classification system based on edge computing and deep learning. In: 2018 Conference on Technologies and Applications of Artificial Intelligence, Taichung, Taiwan on
30 November – 02 December 2018 , pp. 24–27. DOI: 10.1109/TAAI.2018.00015 - 28Huang, X., Yang, D., He, Y., Nelson, P., Low, R., McBride, S., Mitchell, J., et al. (2023) Land cover mapping via crowditalicd multi-directional views: The more directional views, the better. International Journal of Applied Earth Observation and Geoinformation, 122, pp.103382–103382. DOI: 10.1016/j.jag.2023.103382
- 29Janowicz, K., Gao, S., McKenzie, G., Hu, Y. and Bhaduri, B. (2019) GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), pp. 625–636. DOI: 10.1080/13658816.2019.1684500
- 30Kohl, H. (2024) (personal communication, 26 February 2024).
- 31Kohl, H. A., Nelson, P. V., Pring, J., Weaver, K. L., Wiley, D. M., Danielson, A. B., Cooper, R. M., et al. (2021). GLOBE observer and the GO on a trail data challenge: a citizen science approach to generating a global land cover land use reference dataset. Frontiers in Climate, 3, pp. 620497. DOI: 10.3389/fclim.2021.620497
- 32Kottmann, R., Kyba, C., Piera, J., Radicchi, A., Schade, S. and Sturm, U. (2018)
Developing mobile applications for environmental and biodiversity citizen science: considerations and recommendations . Joly A., Vrochidis S., Karatzas K., Karppinen A., Bonnet P. (eds). Multimedia Tools and Applications for Environmental & Biodiversity Informatics. Cham: Springer. pp. 9–30. Available athttps://pure.iiasa.ac.at/id/eprint/15975/1/AAM.pdf [Last accessed 7 June 2024]. DOI: 10.1007/978-3-319-76445-0_2 - 33Laso Bayas, J.C., See, L., Georgieva, I., Schepaschenko, D., Danylo, O., Dürauer, M., Bartl, H., et al. (2022) Drivers of tropical forest loss between 2008 and 2019. Scientific Data, 9(1), pp.146. DOI: 10.1038/s41597-022-01227-3
- 34Li, W., & Hsu, C. Y. (2022) GeoAI for large-scale image analysis and machine vision: recent progress of artificial intelligence in geography. ISPRS International Journal of Geo-Information, 11(7), pp. 385. DOI: 10.3390/ijgi11070385
- 35Liu, P., & Biljecki, F. (2022) A review of spatially-explicit GeoAI applications in Urban Geography. International Journal of Applied Earth Observation and Geoinformation, 112, pp.102936. DOI: 10.1016/j.jag.2022.102936
- 36Low, R.D., Schwerin, T.G., Boger, R.A., Soeffing, C., Nelson, P.V., Bartlett, D., Ingle, P., et al. (2022) Building International Capacity for Citizen Scientist Engagement in Mosquito Surveillance and Mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper. Insects, 13(7), pp. 624. DOI: 10.3390/insects13070624
- 37Luna, S., Gold, M., Albert, A., Ceccaroni, L., Claramunt, B., Danylo, O., Haklay, M., et al. (2018)
Developing mobile applications for environmental and biodiversity citizen science: considerations and recommendations . In: Joly A, Vrochidis S, Karatzas K, Karppinen A, and Bonnet P. Multimedia Tools and Applications for Environmental & Biodiversity Informatics. Cham: Springer. pp. 9–30. Available athttps://pure.iiasa.ac.at/id/eprint/15975/1/AAM.pdf [Last accessed 7 June 2024]. DOI: 10.1007/978-3-319-76445-0_2 - 38Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G. and Johnson, B.A. (2019) Deep learning in remote sensing applications: A meta-analysis and review. ISPRS journal of photogrammetry and remote sensing, 152, pp.166–177. DOI: 10.1016/j.isprsjprs.2019.04.015
- 39Manzanarez, S., Manian, V. and Santos, M. (2022) Land Use Land Cover Labeling of GLOBE Images Using a Deep Learning Fusion Model. Sensors, 22, pp. 6895. DOI: 10.3390/s22186895
- 40McClure, E.C., Sievers, M., Brown, C.J., Buelow, C.A., Ditria, E.M., Hayes, M.A. and Connolly, R.M. (2020) Artificial intelligence meets citizen science to supercharge ecological monitoring. Patterns, 1(7), pp.100109. DOI: 10.1016/j.patter.2020.100109
- 41Minakshi, M., Bharti, P., McClinton, W.B.
III , Mirzakhalov, J., Carney, R.M. and Chellappan, S. (2020) Automating the surveillance of mosquito vectors from trapped specimens using computer vision techniques. Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, Ecuador, onJune 15 – 17 2020 , pp. 105–115. DOI: 10.1145/3378393.3402260 - 42MLCommons (2024) New Croissant metadata format helps standardize ML datasets. Available at
https://mlcommons.org/2024/03/croissant_metadata_announce/ [Last accessed 10 June 2024]. - 43Muñoz, J.P., Boger, R., Dexter, S., Low, R. and Li, J. (2018) Image Recognition of Disease-Carrying Insects: A System for Combating Infectious Diseases Using Image Classification Techniques and Citizen Science. Hawaiian
https://scholarspace.manoa.hawaii.edu/items/e71e0b41-a181-4366-942f-00ff3623a783International Conference on System Sciences, Manoa, HI, onJanuary 3–6, 2018 . Available at [Last accessed 14 October 2024]. - 44Muñoz, J.P., Boger, R., Dexter, S. and Low, R. (2019)
Mosquitoes and Public Health: Improving Data Validation of Citizen Science Contributions Using Computer Vision. Healthcare delivery in the information . Wickramasinghe, N and Bodendorf, F (eds.) Delivering Superior Health and Wellness Management with IoT and Analytics Age. Cham: Springer. pp. 469–493. DOI: 10.1007/978-3-030-17347-0_23 - 45Perger, C., LeDrew, E., See, L., and Fritz, S. (2014) Geography Geo-Wiki in the classroom: Using crowdsourcing to enhance geographical teaching. Future Internet, 6(4), pp. 597–611. DOI: 10.3390/fi6040597
- 46Ren, S., He, K., Girshick, R., and Sun, J. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–1149. DOI: 10.1109/TPAMI.2016.2577031
- 47Schacher, A., Roger, E., Williams, K.J., Stenson, M.P., Sparrow, B. and Lacey, J. (2023) Use-specific considerations for optimising data quality trade-offs in citizen science: recommendations from a targeted literature review to improve the usability and utility for the calibration and validation of remotely sensed products. Remote Sensing, 15(5), pp.1407. DOI: 10.3390/rs15051407
- 48Shinde, R. and Koehl, D. (2024) Introducing Croissant: A format for machine learning datasets. Available at
https://www.earthdata.nasa.gov/learn/blog/introducing-croissant-format-machine-learning-datasets [Last Accessed 9 June 2024]. - 49Shirk, J.L., Ballard, H.L., Wilderman, C.C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., et al. (2012) Public participation in scientific research: a framework for deliberate design. Ecology and Society, 17(2), pp. 29. DOI: 10.5751/ES-04705-170229
- 50Simpson, R., Page, K.R. and De Roure, D. (2014) Zooniverse: observing the world’s largest citizen science platform. In Proceedings of the 23rd international Conference on World Wide Web (pp. 1049–1054). DOI: 10.1145/2567948.2579215
- 51Singh, D. and Arora, D. (2024)
Cloud-Based Object Detection Model Using Amazon Rekognition . Roy, N R, Tanwar, S, Batra, U (eds.) Cyber Security and Digital Forensics. REDCYSEC 2023. Lecture Notes in Networks and Systems, vol. 896, pp.165–177. Springer: Singapore. DOI: 10.1007/978-981-99-9811-1_13 - 52Sinka, M.E., Pironon, S., Massey, N.C., Longbottom, J., Hemingway, J., Moyes, C.L. and Willis, K.J. (2020) A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. In: Proceedings of the National Academy of Sciences, 117(40), pp. 24900–24908. DOI: 10.1073/pnas.2003976117
- 53Song, Y., Kalacska, M., Gašparović, M., Yao, J., and Najibi, N. (2023) Advances in geocomputation and geospatial artificial intelligence (GeoAI) for mapping. International Journal of Applied Earth Observation and Geoinformation, 120, pp.103300. DOI: 10.1016/j.jag.2023.103300
- 54Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., and Damoulas, T. (2014) The eBird enterprise: An integrated approach to development and application of citizen science. Biological conservation, 169, pp. 31–40. DOI: 10.1016/j.biocon.2013.11.003
- 55Taskin, G., Aptoula, E. and Ertürk, A. (2024)
Explainable AI for Earth observation: current methods, open challenges, and opportunities . In: Prasad, S, Chanyssot, J, and Li, J (eds.) Advances in Machine Learning and Image Analysis for GeoAI. Amsterdam: Elsevier. pp. 115–152. DOI: 10.1016/B978-0-44-319077-3.00012-2 - 56Uelmen, J.A.
Jr. , Clark, A., Palmer, J., Kohler, J., Van Dyke, L.C., Low, R. and Carney, R.M. (2023) Global mosquito observations dashboard (GMOD): Creating a user-friendly web interface fueled by citizen science to monitor invasive and vector mosquitoes. International Journal of Health Geographics, 22(1), pp. 28. DOI: 10.1186/s12942-023-00350-7 - 57Velasco-Montero, D., Fernández-Berni, J., Carmona-Galán, R., Sanglas, A. and Palomares, F. (2024) Reliable and efficient integration of AI into camera traps for smart wildlife monitoring based on continual learning. Ecological Informatics, 83, pp.102815. DOI: 10.1016/j.ecoinf.2024.102815
- 58Wang, S., Huang, X., Liu, P., Zhang, M., Biljecki, F., Hu, T., Ge, Y., et al. (2024) Mapping the landscape and roadmap of geospatial artificial intelligence (GeoAI) in quantitative human geography: An extensive systematic review. International Journal of Applied Earth Observation and Geoinformation, 128, pp.103734. DOI: 10.1016/j.jag.2024.103734
- 59Yan, Y. and Ryu, Y. (2021) Exploring Google Street View with deep learning for crop type mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 171, pp. 278–296. DOI: 10.1016/j.isprsjprs.2020.11.022
- 60Yang, D. and Huang, X. (2023) Seeing the World from All Angles: How Multi-View Crowdsourcing is Revolutionizing Land Cover Mapping. Available at
https://observer.globe.gov/news-events-and-people/news/-/obsnewsdetail/19589576/seeing-the-world-from-all-angles-how-multi-view-crowdsourcing-is-revolutionizing-land-cover-mapping [Last accessed September 12, 2024]. - 61Zhang, K.; Leng, S., He, Y., Maharjan, S., and Zhang, Y. (2018) Mobile Edge Computing and Networking for Green and Low-Latency Internet of Things. IEEE Communications Magazine, 56, pp. 39–45. DOI: 10.1109/MCOM.2018.1700882
- 62Zhao, K., Liu, Y., Hao, S., Lu, S., Liu, H., and Zhou, L. (2021) Bounding boxes are all we need: street view image classification via context encoding of detected buildings. IEEE Transactions on Geoscience and Remote Sensing, 60, pp. 1–17. DOI: 10.1109/TGRS.2021.3064316
