References
- 1Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp. 265–283. Software available from
tensorflow.org . - 2Cardamone, C., Schawinski, K., Sarzi, M., Bamford, S.P., Bennert, N., Urry, C. M., Lintott, C.J., et al. (2009) Galaxy Zoo green peas: discovery of a class of compact extremely star-forming galaxies. Monthly Notices of the Royal Astronomical Society. 399, pp. 1191–1205. DOI: 10.1111/j.1365-2966.2009.15383.x
- 3Coffin, S.C., (2023) Redshift Wrangler: Conducting a citizen science study of extragalactic spectroscopy. Rochester Institute of Technology.
- 4Goodfellow, I.J., Shlens, J. and Szegedy, C. (2014) Explaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572 . - 5Hoyle, B., Rau, M.M., Paech, K., Bonnett, C., Seitz, S. and Weller, J., (2015) Anomaly detection for machine learning redshifts applied to SDSS galaxies. Monthly Notices of the Royal Astronomical Society. 452(4), pp. 4183–4194. DOI: 10.1093/mnras/stv1551
- 6Hunter, J.D., (2007) Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), pp.90–95. DOI: 10.1109/MCSE.2007.55
- 7Lai, Q., Khan, S., Nie, Y., Sun, H., Shen, J. and Shao, L. (2020) Understanding more about human and machine attention in deep neural networks. IEEE Transactions on Multimedia. 23, pp. 2086–2099. DOI: 10.1109/TMM.2020.3007321
- 8Liang, Y., Melchior, P., Lu, S., Goulding, A. and Ward, C., (2023) Autoencoding Galaxy Spectra. II. Redshift Invariance and Outlier Detection. The Astronomical Journal. 166(2), p.75. DOI: 10.3847/1538-3881/ace100
- 9Lintott, C.J., Schawinski, K., Keel, W., Van Arkel, H., Bennert, N., Edmondson, E., Thomas, D., et al. (2009) Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo. Monthly Notices of the Royal Astronomical Society. 399, pp. 129–140. DOI: 10.1111/j.1365-2966.2009.15299.x
- 10Lochner, M. and Bassett, B.A. (2021) ASTRONOMALY: Personalised active anomaly detection in astronomical data. Astronomy and Computing. 36, p. 100481. DOI: 10.1016/j.ascom.2021.100481
- 11Margalef-Bentabol, B., Huertas-Company, M., Charnock, T., Margalef-Bentabol, C., Bernardi, M., Dubois, Y., Storey-Fisher, K., et al. (2020) Detecting outliers in astronomical images with deep generative networks. Monthly Notices of the Royal Astronomical Society. 496, pp. 2346–2361. DOI: 10.1093/mnras/staa1647
- 12McInnes, L., Healy, J. and Melville, J., (2018) UMAP: Uniform manifold approximation and projection. Journal of Open Source Software. 3(29), p. 861. DOI: 10.21105/joss.00861
- 13Robitaille, T.P., Tollerud, E.J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., et al. (2013) Astropy: A community python package for astronomy. Astronomy & Astrophysics. 558, p. A33. DOI: 10.1051/0004-6361/201322068
- 14Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B., (2022) High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 2022. pp. 10684–10695. DOI: 10.1109/CVPR52688.2022.01042
- 15Rubner, Y., Tomasi, C. and Guibas, L. J. (2000) The earth mover’s distance as a metric for image retrieval. International journal of computer vision. 40, pp. 99–121. DOI: 10.1023/A:1026543900054
- 16Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G. and Schmidt-Erfurth, U. (2019) f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical image analysis. 54. pp. 30–44. DOI: 10.1016/j.media.2019.01.010
- 17Sharifi Noorian, S., Qiu, S., Gadiraju, U., Yang, J. and Bozzon, A. (2022) What should you know a human-in-the-loop approach to unknown unknowns characterization in image recognition. In Proceedings of the ACM Web Conference 2022. pp. 882–892. DOI: 10.1145/3485447.3512040
- 18Storey-Fisher, K., Huertas-Company, M., Ramachandra, N., Lanusse, F., Leauthaud, A., Luo, Y., Huang, S., et al. (2021) Anomaly detection in hyper suprime-cam galaxy images with generative adversarial networks. Monthly Notices of the Royal Astronomical Society. 508, pp. 2946–2963. DOI: 10.1093/mnras/stab2589
- 19Straub, M.C.P., (2016) Giving citizen scientists a chance: a study of volunteer-led scientific discovery. Citizen Science: Theory and Practice, 1(1), p.5. DOI: 10.5334/cstp.40
- 20Walmsley, M., Scaife, A. M., Lintott, C., Lochner, M., Etsebeth, V., Géron, T., Dickinson, H., et al. (2022) Practical galaxy morphology tools from deep supervised representation learning. Monthly Notices of the Royal Astronomical Society. 513, 1581–1599. DOI: 10.1093/mnras/stac525
- 21York, D.G., Adelman, J., Anderson, J.E.
Jr. , Anderson, S.F., Annis, J., Bahcall, N.A., Bakken, J.A., et al. (2000) The sloan digital sky survey: technical summary. The Astronomical Journal. 120.3, p. 1579. DOI: 10.1086/301513 - 22Zhang, B., Gu, S., Zhang, B., Bao, J., Chen, D., Wen, F., Wang, Y., et al. (2022) Styleswin: Transformer-based gan for high-resolution image generation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11304–11314. DOI: 10.1109/CVPR52688.2022.01102
