References
- 1Aasi, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Ackley, K., Adams, C., et al.
(LIGO scientific collaboration) (2015) Advanced LIGO. Classical and Quantum Gravity 32, 074001. DOI: 10.1088/0264-9381/32/7/074001 - 2Agrawal, A., Gans, J. S., Goldfarb, A. (2023) Do we want less automation? Science 381(6654), pp. 155–158. DOI: 10.1126/science.adh9429
- 3Bahaadini, S., Noroozi, V., Rohani, N., Coughlin, S., Zevin, M., Katsaggelos, A.K. (2018a) DIRECT: Deep discriminative embedding for clustering of LIGO data, in: 2018 25th IEEE International Conference on Image Processing (ICIP). pp. 748–752. DOI: 10.1109/ICIP.2018.8451708
- 4Bahaadini, S., Noroozi, V., Rohani, N., Coughlin, S., Zevin, M., Smith, J.R., Kalogera, V., Katsaggelos, A. (2018b) Machine learning for Gravity Spy: Glitch classification and dataset. Information Sciences, 444, pp. 172–186. DOI: 10.1016/j.ins.2018.02.068
- 5Blake, M.B., Butcher-Green, J.D. (2009) Agent-customized training for human learning performance enhancement. Computers & Education 53, pp. 966–976. DOI: 10.1016/j.compedu.2009.05.014
- 6Brynjolfsson, E., McAfee, A. (2014) The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.
- 7Cavaglia, M., Staats, K., Gill, T. (2019) Finding the origin of noise transients in LIGO data with machine learning. Communications in Computational Physics CiCP, 25. DOI: 10.4208/cicp.OA-2018-0092
- 8Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L., Oliver, J.L. (2019) Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4, 29. DOI: 10.5334/cstp.241
- 9Chatterji, S., Blackburn, L., Martin, G., Katsavounidis, E. (2004) Multiresolution techniques for the detection of gravitational-wave bursts. Classical and Quantum Gravity. 21, S1809–S1818. DOI: 10.1088/0264-9381/21/20/024
- 10Coughlin, S., Bahaadini, S., Rohani, N., Zevin, M., Patane, O., Harandi, M., Jackson, C., et al. (2019) Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning. Physical Review D. 99, 082002. DOI: 10.1103/PhysRevD.99.082002
- 11Crowston, K., Jackson, C.B., Corieri, I., Østerlund, C. (2023)
Design principles for background knowledge to enhance learning in citizen science . Barcelona, Spain and virtual. DOI: 10.1007/978-3-031-28032-0_43 - 12Crowston, K., Mitchell, E., Østerlund, C. (2018) Coordinating advanced crowd work: Extending citizen science. Hawaii International Conference on System Sciences 2018 (HICSS-51). DOI: 10.24251/HICSS.2018.212
- 13Danielsen, F., Burgess, N.D., Balmford, A. (2005) Monitoring matters: Examining the potential of locally-based approaches. Biodiversity & Conservation, 14, pp. 2507–2542. DOI: 10.1007/s10531-005-8375-0
- 14Daugherty, P.R., Wilson, H.J. (2018) Human + machine: Reimagining work in the age of AI. Harvard Business Press.
- 15Davenport, T.H., Kirby, J. (2016) Only humans need apply: Winners and losers in the age of smart machines. Harper Business New York.
- 16Davis, D., Walker, M. (2022) Detector characterization and mitigation of noise in ground-based gravitational-wave interferometers. Galaxies, 10. DOI: 10.3390/galaxies10010012
- 17Engeström, Y. (2001) Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14, pp. 133–156. DOI: 10.1080/13639080020028747
- 18Essick, R., Godwin, P., Hanna, C., Blackburn, L., Katsavounidis, E. (2020) iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors. Machine Learning: Science and Technology 2, 1. DOI: 10.1088/2632-2153/abab5f
- 19Glanzer, J., Banagari, S., Coughlin, S., Zevin, M., Bahaadini, S., Rohani, N., Allen, S., et al. (2021) Gravity Spy machine learning classifications of LIGO glitches from observing runs O1, O2, O3a, and O3b. Zenodo. DOI: 10.5281/zenodo.5649212
- 20Gregor, S., Jones, D. (2007) The anatomy of a design theory. Association for Information Systems.
- 21Hevner, A.R., March, S.T., Park, J., Ram, S. (2008) Design science in information systems research. Management Information Systems Quarterly, 28, 6. DOI: 10.2307/25148625
- 22Huang, Y.-C., Cheng, Y.-T., Chen, L.-L., Hsu, J.Y. (2019) Human-AI Co-Learning for Data-Driven AI. DOI: 10.48550/arXiv.1910.12544
- 23Jackson, C.B., Østerlund, C., Crowston, K., Harandi, M., Allen, S., Bahaadini, S., Coughlin, S., et al. (2020a) Teaching citizen scientists to categorize glitches using machine-learning-guided training. Computers in Human Behavior, 105. DOI: 10.1016/j.chb.2019.106198
- 24Jackson, C.B., Østerlund, C., Harandi, M., Crowston, K., Trouille, L. (2020b) Shifting forms of engagement: Volunteer learning in online citizen science. Proceedings of the ACM on Human-Computer Interaction 36. DOI: 10.1145/3392841
- 25Kaptelinin, V., Nardi, B.A. (2009) Acting with technology: Activity theory and interaction design. The MIT Press, Cambridge, Mass. London.
- 26Kent, C., Chaudhry, M.A., Cukurova, M., Bashir, I., Pickard, H., Jenkins, C., du Boulay, B., Moeini, A., et al. (2021)
Machine learning models and their development process as learning affordances for humans , in: Roll, I., McNamara, D., Sosnovsky, S., Luckin, Rose, Dimitrova, V. (Eds.), Artificial Intelligence in Education. Springer International Publishing, Cham, pp. 228–240. DOI: 10.1007/978-3-030-78292-4_19 - 27Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012) Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
- 28Kullenberg, C., Kasperowski, D. (2016) What is citizen science?–A scientometric meta-analysis. PloS one, 11,
e0147152 . DOI: 10.1371/journal.pone.0147152 - 29Mugar, G., Østerlund, C., Hassman, K.D., Crowston, K., Jackson, C.B. (2014) Planet hunters and seafloor explorers: legitimate peripheral participation through practice proxies in online citizen science, in: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing.
ACM , pp. 109–119. DOI: 10.1145/2531602.2531721 - 30Nguyen, H.N., Gonzalez, J., Guo, J., Nguyen, N.V.T., Dang, T. (2021) VisMCA: A visual analytics system for misclassification correction and analysis. VAST Challenge 2020, Mini-Challenge 2 Award: Honorable Mention for Detailed Analysis of Patterns of Misclassification.
- 31Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J. (2018) Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences of the United States of America, 115. DOI: 10.1073/pnas.1719367115
- 32Nuttall, L.K. (2018) Characterizing transient noise in the LIGO detectors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170286. DOI: 10.1098/rsta.2017.0286
- 33Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S. (2007) A design science research methodology for information systems Research. Journal of Management Information Systems, 24, pp. 45–77. DOI: 10.2753/MIS0742-1222240302
- 34Raisch, S., Krakowski, S. (2021) Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46, pp. 192–210. DOI: 10.5465/amr.2018.0072
- 35Riesch, H., Potter, C. (2014) Citizen science as seen by scientists: Methodological, epistemological and ethical dimensions. Public Understanding of Science, 23, pp. 107–120. DOI: 10.1177/0963662513497324
- 36Schoonderwoerd, T.A.J., Zoelen, E.M. van, Bosch, K. van den, Neerincx, M.A. (2022) Design patterns for human-AI co-learning: A wizard-of-Oz evaluation in an urban-search-and-rescue task. International Journal of Human-Computer Studies, 164, 102831. DOI: 10.1016/j.ijhcs.2022.102831
- 37Simpson, R., Page, K. R., De Roure, D. (2014, April) Zooniverse: observing the world’s largest citizen science platform. In Proceedings of the 23rd international conference on world wide web (pp. 1049–1054). DOI: 10.1145/2567948.2579215
- 38Smith, J.R., Abbott, T., Hirose, E., Leroy, N., Macleod, D., McIver, J., Saulson, P., Shawhan, P. (2011) A Hierarchical Method for Vetoing Noise Transients in Gravitational-Wave Detectors. Classical and Quantum Gravity, 28, 235005. DOI: 10.1088/0264-9381/28/23/235005
- 39Soni, S., Berry, C.P.L., Coughlin, S.B., Harandi, M., Jackson, C.B., Crowston, K., Østerlund, C., et al. (2021) Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning. Classical and Quantum Gravity, 38, 195016. DOI: 10.1088/1361-6382/ac1ccb
- 40van den Bosch, K., Schoonderwoerd, T., Blankendaal, R., Neerincx, M. (2019)
Six challenges for human-AI co-learning , in: Sottilare, R.A., Schwarz, J. (Eds.), Adaptive instructional systems. Springer International Publishing, Cham, pp. 572–589. DOI: 10.1007/978-3-030-22341-0_45 - 41van Zoelen, E.M., van den Bosch, K., Neerincx, M. (2021) Becoming team members: Identifying interaction patterns of mutual adaptation for human-robot co-learning. Front. Robot. AI, 8. DOI: 10.3389/frobt.2021.692811
- 42Vygotsky, L.S., Cole, M. (1978) Mind in Society: Development of Higher Psychological Processes. Harvard university press.
- 43Wilder, B., Horvitz, E., Kamar, E. (2020) Learning to complement humans. DOI: 10.24963/ijcai.2020/212
- 44Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., et al. (2019) Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecolology and Evolution, 10, pp. 80–91. DOI: 10.1111/2041-210X.13099
- 45Wu, Y., Zevin, M., Berry, C.P., Crowston, K., Østerlund, C., Doctor, Z., Banagiri, S., et al. (2024) Advancing glitch classification in Gravity Spy: Multi-view fusion with attention-based machine learning for advanced LIGO’s fourth observing run. arXiv preprint
arXiv:2401.12913 . - 46Zevin, M., Coughlin, S., Bahaadini, S., Besler, E., Rohani, N., Allen, S., Cabero, M., et al. (2017) Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. Classical and Quantum Gravity, 34, 064003. DOI: 10.1088/1361-6382/aa5cea
- 47Zevin, M., Jackson, C.B., Doctor, Z., Wu, Y., Østerlund, C., Johnson, L.C., Berry, C.P.L., et al. (2024) Gravity Spy: Lessons learned and a path forward. The European Physical Journal Plus, 139, 100. DOI: 10.1140/epjp/s13360-023-04795-4
