Have a personal or library account? Click to login
Supporting Human and Machine Co-Learning in Citizen Science: Lessons From Gravity Spy Cover

Supporting Human and Machine Co-Learning in Citizen Science: Lessons From Gravity Spy

Open Access
|Dec 2024

References

  1. 1Aasi, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Ackley, K., Adams, C., et al. (LIGO scientific collaboration) (2015) Advanced LIGO. Classical and Quantum Gravity 32, 074001. DOI: 10.1088/0264-9381/32/7/074001
  2. 2Agrawal, A., Gans, J. S., Goldfarb, A. (2023) Do we want less automation? Science 381(6654), pp. 155158. DOI: 10.1126/science.adh9429
  3. 3Bahaadini, S., Noroozi, V., Rohani, N., Coughlin, S., Zevin, M., Katsaggelos, A.K. (2018a) DIRECT: Deep discriminative embedding for clustering of LIGO data, in: 2018 25th IEEE International Conference on Image Processing (ICIP). pp. 748752. DOI: 10.1109/ICIP.2018.8451708
  4. 4Bahaadini, S., Noroozi, V., Rohani, N., Coughlin, S., Zevin, M., Smith, J.R., Kalogera, V., Katsaggelos, A. (2018b) Machine learning for Gravity Spy: Glitch classification and dataset. Information Sciences, 444, pp. 172186. DOI: 10.1016/j.ins.2018.02.068
  5. 5Blake, M.B., Butcher-Green, J.D. (2009) Agent-customized training for human learning performance enhancement. Computers & Education 53, pp. 966976. DOI: 10.1016/j.compedu.2009.05.014
  6. 6Brynjolfsson, E., McAfee, A. (2014) The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.
  7. 7Cavaglia, M., Staats, K., Gill, T. (2019) Finding the origin of noise transients in LIGO data with machine learning. Communications in Computational Physics CiCP, 25. DOI: 10.4208/cicp.OA-2018-0092
  8. 8Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L., Oliver, J.L. (2019) Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4, 29. DOI: 10.5334/cstp.241
  9. 9Chatterji, S., Blackburn, L., Martin, G., Katsavounidis, E. (2004) Multiresolution techniques for the detection of gravitational-wave bursts. Classical and Quantum Gravity. 21, S1809S1818. DOI: 10.1088/0264-9381/21/20/024
  10. 10Coughlin, S., Bahaadini, S., Rohani, N., Zevin, M., Patane, O., Harandi, M., Jackson, C., et al. (2019) Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning. Physical Review D. 99, 082002. DOI: 10.1103/PhysRevD.99.082002
  11. 11Crowston, K., Jackson, C.B., Corieri, I., Østerlund, C. (2023) Design principles for background knowledge to enhance learning in citizen science. Barcelona, Spain and virtual. DOI: 10.1007/978-3-031-28032-0_43
  12. 12Crowston, K., Mitchell, E., Østerlund, C. (2018) Coordinating advanced crowd work: Extending citizen science. Hawaii International Conference on System Sciences 2018 (HICSS-51). DOI: 10.24251/HICSS.2018.212
  13. 13Danielsen, F., Burgess, N.D., Balmford, A. (2005) Monitoring matters: Examining the potential of locally-based approaches. Biodiversity & Conservation, 14, pp. 25072542. DOI: 10.1007/s10531-005-8375-0
  14. 14Daugherty, P.R., Wilson, H.J. (2018) Human + machine: Reimagining work in the age of AI. Harvard Business Press.
  15. 15Davenport, T.H., Kirby, J. (2016) Only humans need apply: Winners and losers in the age of smart machines. Harper Business New York.
  16. 16Davis, D., Walker, M. (2022) Detector characterization and mitigation of noise in ground-based gravitational-wave interferometers. Galaxies, 10. DOI: 10.3390/galaxies10010012
  17. 17Engeström, Y. (2001) Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14, pp. 133156. DOI: 10.1080/13639080020028747
  18. 18Essick, R., Godwin, P., Hanna, C., Blackburn, L., Katsavounidis, E. (2020) iDQ: Statistical inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-wave detectors. Machine Learning: Science and Technology 2, 1. DOI: 10.1088/2632-2153/abab5f
  19. 19Glanzer, J., Banagari, S., Coughlin, S., Zevin, M., Bahaadini, S., Rohani, N., Allen, S., et al. (2021) Gravity Spy machine learning classifications of LIGO glitches from observing runs O1, O2, O3a, and O3b. Zenodo. DOI: 10.5281/zenodo.5649212
  20. 20Gregor, S., Jones, D. (2007) The anatomy of a design theory. Association for Information Systems.
  21. 21Hevner, A.R., March, S.T., Park, J., Ram, S. (2008) Design science in information systems research. Management Information Systems Quarterly, 28, 6. DOI: 10.2307/25148625
  22. 22Huang, Y.-C., Cheng, Y.-T., Chen, L.-L., Hsu, J.Y. (2019) Human-AI Co-Learning for Data-Driven AI. DOI: 10.48550/arXiv.1910.12544
  23. 23Jackson, C.B., Østerlund, C., Crowston, K., Harandi, M., Allen, S., Bahaadini, S., Coughlin, S., et al. (2020a) Teaching citizen scientists to categorize glitches using machine-learning-guided training. Computers in Human Behavior, 105. DOI: 10.1016/j.chb.2019.106198
  24. 24Jackson, C.B., Østerlund, C., Harandi, M., Crowston, K., Trouille, L. (2020b) Shifting forms of engagement: Volunteer learning in online citizen science. Proceedings of the ACM on Human-Computer Interaction 36. DOI: 10.1145/3392841
  25. 25Kaptelinin, V., Nardi, B.A. (2009) Acting with technology: Activity theory and interaction design. The MIT Press, Cambridge, Mass. London.
  26. 26Kent, C., Chaudhry, M.A., Cukurova, M., Bashir, I., Pickard, H., Jenkins, C., du Boulay, B., Moeini, A., et al. (2021) Machine learning models and their development process as learning affordances for humans, in: Roll, I., McNamara, D., Sosnovsky, S., Luckin, Rose, Dimitrova, V. (Eds.), Artificial Intelligence in Education. Springer International Publishing, Cham, pp. 228240. DOI: 10.1007/978-3-030-78292-4_19
  27. 27Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012) Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
  28. 28Kullenberg, C., Kasperowski, D. (2016) What is citizen science?–A scientometric meta-analysis. PloS one, 11, e0147152. DOI: 10.1371/journal.pone.0147152
  29. 29Mugar, G., Østerlund, C., Hassman, K.D., Crowston, K., Jackson, C.B. (2014) Planet hunters and seafloor explorers: legitimate peripheral participation through practice proxies in online citizen science, in: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing. ACM, pp. 109119. DOI: 10.1145/2531602.2531721
  30. 30Nguyen, H.N., Gonzalez, J., Guo, J., Nguyen, N.V.T., Dang, T. (2021) VisMCA: A visual analytics system for misclassification correction and analysis. VAST Challenge 2020, Mini-Challenge 2 Award: Honorable Mention for Detailed Analysis of Patterns of Misclassification.
  31. 31Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J. (2018) Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences of the United States of America, 115. DOI: 10.1073/pnas.1719367115
  32. 32Nuttall, L.K. (2018) Characterizing transient noise in the LIGO detectors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170286. DOI: 10.1098/rsta.2017.0286
  33. 33Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S. (2007) A design science research methodology for information systems Research. Journal of Management Information Systems, 24, pp. 4577. DOI: 10.2753/MIS0742-1222240302
  34. 34Raisch, S., Krakowski, S. (2021) Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46, pp. 192210. DOI: 10.5465/amr.2018.0072
  35. 35Riesch, H., Potter, C. (2014) Citizen science as seen by scientists: Methodological, epistemological and ethical dimensions. Public Understanding of Science, 23, pp. 107120. DOI: 10.1177/0963662513497324
  36. 36Schoonderwoerd, T.A.J., Zoelen, E.M. van, Bosch, K. van den, Neerincx, M.A. (2022) Design patterns for human-AI co-learning: A wizard-of-Oz evaluation in an urban-search-and-rescue task. International Journal of Human-Computer Studies, 164, 102831. DOI: 10.1016/j.ijhcs.2022.102831
  37. 37Simpson, R., Page, K. R., De Roure, D. (2014, April) Zooniverse: observing the world’s largest citizen science platform. In Proceedings of the 23rd international conference on world wide web (pp. 10491054). DOI: 10.1145/2567948.2579215
  38. 38Smith, J.R., Abbott, T., Hirose, E., Leroy, N., Macleod, D., McIver, J., Saulson, P., Shawhan, P. (2011) A Hierarchical Method for Vetoing Noise Transients in Gravitational-Wave Detectors. Classical and Quantum Gravity, 28, 235005. DOI: 10.1088/0264-9381/28/23/235005
  39. 39Soni, S., Berry, C.P.L., Coughlin, S.B., Harandi, M., Jackson, C.B., Crowston, K., Østerlund, C., et al. (2021) Discovering features in gravitational-wave data through detector characterization, citizen science and machine learning. Classical and Quantum Gravity, 38, 195016. DOI: 10.1088/1361-6382/ac1ccb
  40. 40van den Bosch, K., Schoonderwoerd, T., Blankendaal, R., Neerincx, M. (2019) Six challenges for human-AI co-learning, in: Sottilare, R.A., Schwarz, J. (Eds.), Adaptive instructional systems. Springer International Publishing, Cham, pp. 572589. DOI: 10.1007/978-3-030-22341-0_45
  41. 41van Zoelen, E.M., van den Bosch, K., Neerincx, M. (2021) Becoming team members: Identifying interaction patterns of mutual adaptation for human-robot co-learning. Front. Robot. AI, 8. DOI: 10.3389/frobt.2021.692811
  42. 42Vygotsky, L.S., Cole, M. (1978) Mind in Society: Development of Higher Psychological Processes. Harvard university press.
  43. 43Wilder, B., Horvitz, E., Kamar, E. (2020) Learning to complement humans. DOI: 10.24963/ijcai.2020/212
  44. 44Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., et al. (2019) Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecolology and Evolution, 10, pp. 8091. DOI: 10.1111/2041-210X.13099
  45. 45Wu, Y., Zevin, M., Berry, C.P., Crowston, K., Østerlund, C., Doctor, Z., Banagiri, S., et al. (2024) Advancing glitch classification in Gravity Spy: Multi-view fusion with attention-based machine learning for advanced LIGO’s fourth observing run. arXiv preprint arXiv:2401.12913.
  46. 46Zevin, M., Coughlin, S., Bahaadini, S., Besler, E., Rohani, N., Allen, S., Cabero, M., et al. (2017) Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. Classical and Quantum Gravity, 34, 064003. DOI: 10.1088/1361-6382/aa5cea
  47. 47Zevin, M., Jackson, C.B., Doctor, Z., Wu, Y., Østerlund, C., Johnson, L.C., Berry, C.P.L., et al. (2024) Gravity Spy: Lessons learned and a path forward. The European Physical Journal Plus, 139, 100. DOI: 10.1140/epjp/s13360-023-04795-4
DOI: https://doi.org/10.5334/cstp.738 | Journal eISSN: 2057-4991
Language: English
Submitted on: Feb 16, 2024
Accepted on: Aug 22, 2024
Published on: Dec 9, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Carsten Østerlund, Kevin Crowston, Corey B. Jackson, Yunan Wu, Alexander O. Smith, Aggelos K. Katsaggelos, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.