Have a personal or library account? Click to login
Volunteered Geographic Information, Citizen Science and Machine Learning in the Service of Sustainable Development Goals and the Sendai Framework Cover

Volunteered Geographic Information, Citizen Science and Machine Learning in the Service of Sustainable Development Goals and the Sendai Framework

By: Vyron Antoniou  
Open Access
|Jun 2023

References

  1. 1Amano, T, Lamming, JD and Sutherland, WJ. 2016. Spatial gaps in global biodiversity information and the role of citizen science. Bioscience, 66(5): 393400. DOI: 10.1093/biosci/biw022
  2. 2Anderson, K, Ryan, B, Sonntag, W, Kavvada, A and Friedl, L. 2017. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-spatial Information Science, 20(2): 7796. DOI: 10.1080/10095020.2017.1333230
  3. 3Andries, A, Morse, S, Murphy, RJ, Sadhukhan, J, Martinez-Hernandez, E, Amezcua-Allieri, MA and Aburto, J. 2023. Potential of Using Night-Time Light to Proxy Social Indicators for Sustainable Development. Remote Sensing, 15(5): 1209. DOI: 10.3390/rs15051209
  4. 4Antoniou, V. 2011. User generated spatial content: an analysis of the phenomenon and its challenges for mapping agencies. PhD Thesis, University College London.
  5. 5Antoniou, V and Potsiou, C. 2020. A Deep Learning Method to Accelerate the Disaster Response Process. Remote Sensing, 12(3): 544. DOI: 10.3390/rs12030544
  6. 6Apostolakis, A, Girtsou, S, Giannopoulos, G, Bartsotas, NS and Kontoes, C. 2022. Estimating Next Day’s Forest Fire Risk via a Complete Machine Learning Methodology. Remote Sensing, 14(5): 1222. DOI: 10.3390/rs14051222
  7. 7Apostolopoulos, K and Potsiou, C. 2022. Consideration on how to introduce gamification tools to enhance citizen engagement in crowdsourced cadastral surveys. Survey Review, 54(383): 142152. DOI: 10.1080/00396265.2021.1888027
  8. 8Basiouka, S, Potsiou, C and Bakogiannis, E. 2015. OpenStreetMap for cadastral purposes: an application using VGI for official processes in urban areas. Survey Review, 47(344): 333341. DOI: 10.1179/1752270615Y.0000000011
  9. 9Bradter, U, Mair, L, Jönsson, M, Knape, J, Singer, A and Snäll, T. 2018. Can opportunistically collected Citizen Science data fill a data gap for habitat suitability models of less common species? Methods in Ecology and Evolution, 9(7): 16671678. DOI: 10.1111/2041-210X.13012
  10. 10Carter, WN. 1991. Disaster Management: A Disaster Manager’s Handbook. Manila: Mamta Publication.
  11. 11Castell, N, Dauge, FR, Schneider, P, Vogt, M, Lerner, U, Fishbain, B, Broday, D and Bartonova, A. 2017. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment international, 99: 293302. DOI: 10.1016/j.envint.2016.12.007
  12. 12Ceccaroni, L, Bibby, J, Roger, E, Flemons, P, Michael, K, Fagan, L and Oliver, JL. 2019. Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4(1). DOI: 10.5334/cstp.241
  13. 13Challies, E, Newig, J, Thaler, T, Kochskämper, E and Levin-Keitel, M. 2016. Participatory and collaborative governance for sustainable flood risk management: An emerging research agenda. Environmental Science and Policy, 55(2016): 275280. DOI: 10.1016/j.envsci.2015.09.012
  14. 14Chatenoux, B, et al. 2021. The Swiss data cube, analysis ready data archive using earth observations of Switzerland. Scientific data, 8: 111. DOI: 10.1038/s41597-021-01076-6
  15. 15Dalyot, K and Dalyot, S. 2018. Towards the use of crowdsourced GIS data to steferenced child well-being globally. Social Indicators Research, 139(1): 185204. DOI: 10.1007/s11205-017-1714-1
  16. 16Eveleigh, A, Jennett, C, Lynn, S and Cox, AL. 2013. “I want to be a captain! I want to be a captain!” gamification in the old weather citizen science project. In: First international conference on gameful design, research, and applications, 7982. Toronto, Canada on October 2–4. DOI: 10.1145/2583008.2583019
  17. 17Fonte, CC, Minghini, M, Patriarca, J, Antoniou, V, See, L and Skopeliti, A. 2017. Generating up-to-date and detailed land use and land cover maps using OpenStreetMap and GlobeLand30. ISPRS International Journal of Geo-Information, 6(4): 125. DOI: 10.3390/ijgi6040125
  18. 18Foody, GM, Ling, F, Boyd, DS, Li, X and Wardlaw, J. 2019. Earth observation and machine learning to meet Sustainable Development Goal 8.7: Mapping sites associated with slavery from space. Remote Sensing, 11(3): 266. DOI: 10.3390/rs11030266
  19. 19Fraisl, D, Campbell, J, See, L, Wehn, U, Wardlaw, J, Gold, M, Moorthy, I, Arias, R, Piera, J, Oliver, J, Masó, J, Penker, M and Fritz, S. 2020. Mapping citizen science contributions to the UN sustainable development goals. Sustainability Science, 15: 17351751. DOI: 10.1007/s11625-020-00833-7
  20. 20Fritz, S, See, L, Carlson, T, Haklay, MM, Oliver, JL, Fraisl, D, Mondardini, R, Brocklehurst, M, Shanley, LA, Schade, S and When, U. 2019. Citizen science and the United Nations Sustainable Development Goals. Nature Sustainability, 2(10): 922930. DOI: 10.1038/s41893-019-0390-3
  21. 21Goodchild, MF. 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4): 211221. DOI: 10.1007/s10708-007-9111-y
  22. 22Haklay, M. 2013. Citizen science and volunteered geographic information: Overview and typology of participation. Crowdsourcing geographic knowledge, 105122. DOI: 10.1007/978-94-007-4587-2_7
  23. 23Haklay, M, Antoniou, V, Basiouka, S, Soden, R and Mooney, P. 2014. Crowdsourced geographic information use in government. London: World Bank Publications.
  24. 24Haklay, M, Antoniou, V, Basiouka, S, Soden, RJ, Deparday, V, Sheely, RM and Mooney, P. 2018. Identifying Success Factors in Crowdsourced Geographic Information Use in Government. London: World Bank Publications.
  25. 25Hsu, A, Malik, O, Johnson, L and Esty, DC. 2014. Development: Mobilize citizens to track sustainability. Nature News, 508(7494): 33. DOI: 10.1038/508033a
  26. 26Irwin, A. 1995. Citizen science: A study of people, expertise and sustainable development. London: Routledge.
  27. 27Jean, N, Burke, M, Xie, M, Davis, WM, Lobell, DB and Ermon, S. 2016. Combining satellite imagery and machine learning to predict poverty. Science, 353(6301): 790794. DOI: 10.1126/science.aaf789
  28. 28Karwowska, K and Wierzbicki, D. 2022. Using Super-Resolution Algorithms for Small Satellite Imagery: A Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. DOI: 10.1109/JSTARS.2022.3167646
  29. 29Kavvada, A, Metternicht, G, Kerblat, F, Mudau, N, Haldorson, M, Laldaparsad, S, Friedl, L, Held, A and Chuvieco, E. 2020. Towards delivering on the sustainable development goals using earth observations. Remote Sensing of Environment, 247: 111930. DOI: 10.1016/j.rse.2020.111930
  30. 30Li, H, Zech, J, Ludwig, C, Fendrich, S, Shapiro, A, Schultz, M and Zipf, A. 2021. Automatic mapping of national surface water with OpenStreetMap and Sentinel-2 MSI data using deep learning. International Journal of Applied Earth Observation and Geoinformation, 104: 102571. DOI: 10.1016/j.jag.2021.102571
  31. 31Mateo-Garcia, G, Veitch-Michaelis, J, Smith, L, Oprea, SV, Schumann, G, Gal, Y, Baydin, AG and Backes, D. 2021. Towards global flood mapping onboard low cost satellites with machine learning. Scientific reports, 11(1): 112. DOI: 10.1038/s41598-021-86650-z
  32. 32Maxwell, AE, Warner, TA and Fang, F. 2018. Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9): 27842817. DOI: 10.1080/01431161.2018.1433343
  33. 33Moallemi, EA, Malekpour, S, Hadjikakou, M, Raven, R, Szetey, K, Ningrum, D, Dhiaulhaq, A and Bryan, BA. 2020. Achieving the sustainable development goals requires transdisciplinary innovation at the local scale. One Earth, 3(3): 300313. DOI: 10.1016/j.oneear.2020.08.006
  34. 34Murray, V, Maini, R, Clarke, L and Eltinay, N. 2017. Coherence between the Sendai Framework, the SDGs, the Climate Agreement, New Urban Agenda and World Humanitarian Summit, and the role of science in their implementation. In: Global Platform for Disaster Risk Reduction, Cancun, Mexico on 22–26 May 2017, 2426.
  35. 35Pánek, J, Marek, L, Pászto, V and Valůch, J. 2017. The Crisis Map of the Czech Republic: the nationwide deployment of an Ushahidi application for disasters. Disasters, 41(4): 649671. DOI: 10.1111/disa.12221
  36. 36Park, S, Im, J, Jang, E and Rhee, J. 2016. Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agricultural and forest meteorology, 216: 157169. DOI: 10.1016/j.agrformet.2015.10.011
  37. 37Quinlivan, L, Chapman, DV and Sullivan, T. 2020. Applying citizen science to monitor for the Sustainable Development Goal Indicator 6.3.2: a review. Environmental monitoring and assessment, 192: 111. DOI: 10.1007/s10661-020-8193-6
  38. 38Rabiee, M. 2019. Spatially Enabling the SDGs: The Social, Economic, and Environmental Impacts of Spatial Enablement. In: Sustainable Development Goals Connectivity Dilemma: Land and Geospatial Information for Urban and Rural Resilience, 6577. Boca Raton: CRC Press. DOI: 10.1201/9780429290626-4
  39. 39Rahmatizadeh, S, Rajabifard, A and Kalantari, M. 2016. A conceptual framework for utilising VGI in land administration. Land Use Policy, 56: 8189. DOI: 10.1016/j.landusepol.2016.04.027
  40. 40Rajabifard, A, Crompvoets, J, Kalantari, M and Kok, B. 2010. Spatially enabling society: research, emerging trends and critical assessment. Belgium: Leuven University Press.
  41. 41Rajabifard, A, Potts, K, Torhonen, MP, Barra, F and Justiniano, I. 2019. Leveraging National Land and Geospatial Systems for Improved Disaster Resilience. In: Sustainable Development Goals Connectivity Dilemma: Land and Geospatial Information for Urban and Rural Resilience, 8192. Boca Raton: CRC Press. DOI: 10.1201/9780429290626-5
  42. 42Roberts, E, Andrei, S, Huq, S and Flint, L. 2015. Resilience synergies in the post-2015 development agenda. Nature Climate Change, 5(12): 1024. DOI: 10.1038/nclimate2776
  43. 43Rönneberg, M and Kettunen, P. 2021. Enabling citizens to refine the location accuracy of cadastre boundary markers by gamified VGI. Abstracts of the ICA, 3: 252. DOI: 10.5194/ica-abs-3-252-2021
  44. 44Rostow, WW and Rostow, WW. 1990. The stages of economic growth: A non-communist manifesto. Cambridge, UK: Cambridge University Press. DOI: 10.1017/CBO9780511625824
  45. 45Savan, B, Morgan, AJ and Gore, C. 2003. Volunteer environmental monitoring and the role of the universities: the case of Citizens’ Environment Watch. Environmental management, 31(5): 05610568. DOI: 10.1007/s00267-002-2897-y
  46. 46Scott, G and Rajabifard, A. 2017. Sustainable development and geospatial information: a strategic framework for integrating a global policy agenda into national geospatial capabilities. Geo-spatial information science, 20(2): 5976. DOI: 10.1080/10095020.2017.1325594
  47. 47Scott, G and Rajabifard, A. 2019. SDGs Roadmap. In: Sustainable Development Goals Connectivity Dilemma: Land and Geospatial Information for Urban and Rural Resilience, 1034. Boca Raton: CRC Press. DOI: 10.1201/9780429290626
  48. 48Sheppard, SA and Terveen, L. 2011. Quality is a verb: the operationalization of data quality in a citizen science community. In: 7th International Symposium on Wikis and Open Collaboration, 29–38. Mountain View, CA on 3–5 October 2011. DOI: 10.1145/2038558.2038565
  49. 49Silvertown, J. 2009. A new dawn for citizen science. Trends in ecology & evolution, 24(9): 467471. DOI: 10.1016/j.tree.2009.03.017
  50. 50Sosko, S and Dalyot, S. 2017. Crowdsourcing user-generated mobile sensor weather data for densifying static geosensor networks. ISPRS International Journal of Geo-Information, 6(3): 61. DOI: 10.3390/ijgi6030061
  51. 51Stehman, SV, Fonte, CC, Foody, GM and See, L. 2018. Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover. Remote Sensing of Environment, 212: 4759. DOI: 10.1016/j.rse.2018.04.014
  52. 52Sultan, J, Ben-Haim, G, Haunert, JH and Dalyot, S. 2017. Extracting spatial patterns in bicycle routes from crowdsourced data. Transactions in GIS, 21(6): 13211340. DOI: 10.1111/tgis.12280
  53. 53Tilon, S, Nex, F, Kerle, N and Vosselman, G. 2020. Post-disaster building damage detection from earth observation imagery using unsupervised and transferable anomaly detecting generative adversarial networks. Remote sensing, 12(24): 4193. DOI: 10.3390/rs12244193
  54. 54Tomaszewski, B, Judex, M, Szarzynski, J, Radestock, C and Wirkus, L. 2015. Geographic information systems for disaster response: A review. Journal of Homeland Security and Emergency Management, 12(3): 571602. DOI: 10.1515/jhsem-2014-0082
  55. 55UN. 2015a. Transforming our world: The 2030 agenda for sustainable development. General Assembley 70 session. [online access at: https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement last accessed 28 September 2022].
  56. 56UN. 2015b. Sendai framework for disaster risk reduction 2015–2030. [online access at: https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf last accessed 28 September 2022].
  57. 57UN. 2015c. Earth Observations in Support of National Strategies for Disaster-Risk Management [available online at: http://www.un-spider.org/sites/default/files/White_paper_Earth%20observations%20for%20DRR.pdf last accessed 28 September 2022].
  58. 58UN. 2017. Earth Observations for Official Statistics [online available at: https://unstats.un.org/bigdata/taskteams/satellite/UNGWG_Satellite_Task_Team_Report_WhiteCover.pdf last accessed 28 September 2022].
  59. 59UN. 2022. The Sustainable Development Goals Report [online available at: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf last accessed 28 March 2023].
  60. 60UN. Australian Bureau of Statistics; Queensland University of Technology; Queensland Government; Commonwealth Scientific and Industrial Research Organisation; European Commission; National Institute of Statistics and Geography; Statistics Canada. Earth Observations for Official Statistics, 2017. [online available at: https://unstats.un.org/bigdata/task-teams/earth-observation/UNGWG_Satellite_Task_Team_Report_WhiteCover.pdf last accessed 28 March 2023].
  61. 61UNDRR. 2016. Implementing the Sendai Framework to achieve the Sustainable Development Goals. [online access at: https://www.unisdr.org/files/50438_implementingthesendaiframeworktoach.pdf last accessed 28 September 2022].
  62. 62UN-GGIM and World Bank. 2018. Integrated geospatial information framework a strategic guide to develop and strengthen national geospatial information management. [online access at: http://ggim.un.org/meetings/GGIM-committee/8th-Session/documents/Part%201-IGIF-Overarching-Strategic-Framework-24July2018.pdf last accessed 28 September 2022].
  63. 63UNISDR. 2005. Hyogo framework for action 2005–2015 [online access at: https://www.unisdr.org/2005/wcdr/intergover/official-doc/L-docs/Hyogo-framework-for-action-english.pdf last accessed 28 September 2022].
  64. 64UNTT. 2015. Working Group on Sustainable Development Financing [online access at: https://sustainabledevelopment.un.org/content/documents/2096Chapter%201-global%20investment%20requirement%20estimates.pdf last accessed 28 September 2022].
  65. 65United States Department of Homeland Security. 2013. National Response Framework. 2nd ed. [online access at: https://www.hsdl.org/?view&did=735934 last accessed 28 September 2022].
  66. 66Van den Homberg, M and Susha, I. 2018. Characterizing data ecosystems to support official statistics with open mapping data for reporting on sustainable development goals. ISPRS International Journal of Geo-Information, 7(12): 456. DOI: 10.3390/ijgi7120456
  67. 67Vinuesa, R, Azizpour, H, Leite, I, Balaam, M, Dignum, V, Domisch, S, Felländer, A, Langhans, SD, Tegmark, M and Nerini, FF. 2020. The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1): 110. DOI: 10.1038/s41467-019-14108-y
  68. 68Vohland, K, Sauermann, H, Antoniou, V, Balazs, B, Göbel, C, Karatzas, K, Mooney, P, Perelló, J, Ponti, M, Samson, R and Winter, S. 2019. Citizen science and sustainability transitions. Research Policy, 49(5): 103978. DOI: 10.1016/j.respol.2020.103978
  69. 69Vorisek, D and Yu, S. 2020. Understanding the cost of achieving the Sustainable Development Goals. [online access at: https://openknowledge.worldbank.org/server/api/core/bitstreams/06eb043e-3b06-5547-bfa4-56f4c1202c23/content last accessed 24 March 2023]. DOI: 10.1596/1813-9450-9164
  70. 70Wallace, J, Williamson, IP, Rajabifard, A and Bennett, R. 2006. Spatial information opportunities for Government. Journal of Spatial Science, 51(1): 7999. DOI: 10.1080/14498596.2006.9635066
  71. 71Wegner, JD, Roscher, R, Volpi, M and Veronesi, F. 2018. Foreword to the Special Issue on Machine Learning for Geospatial Data Analysis. ISPRS International Journal of Geo-Information, 7(4): 147. DOI: 10.3390/ijgi7040147
  72. 72Williamson, I, Rajabifard, A and Wallace, J. 2007. Spatially Enabling Government–An International Challenge. In: International Workshop on Spatial Enablement of Government and NSDI–Policy Implications, Seoul, Korea on 12 June 2007, pp. 112.
  73. 73World Bank & FAO. 2011. Global Strategy to Improve Agricultural and Rural Statistics [online access at: http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/ICAS5/Ag_Statistics_Strategy_Final.pdf last accessed 28 September 2022].
  74. 74Wu, B, Tian, F, Zhang, M, Zeng, H and Zeng, Y. 2020. Cloud services with big data provide a solution for monitoring and tracking sustainable development goals. Geography and Sustainability, 1(1): 2532. DOI: 10.1016/j.geosus.2020.03.006
  75. 75Yuan, Q, Shen, H, Li, T, Li, Z, Li, S, Jiang, Y, Xu, H, Tan, W, Yang, Q, Wang, J, Gao, J and Zhang, L. 2020. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241: 111716. DOI: 10.1016/j.rse.2020.111716
  76. 76Zennaro, F, Furlan, E, Simeoni, C, Torresan, S, Aslan, S, Critto, A and Marcomini, A. 2021. Exploring machine learning potential for climate change risk assessment. Earth-Science Reviews, 220: 103752. DOI: 10.1016/j.earscirev.2021.103752
  77. 77Zook, M, Graham, M, Shelton, T and Gorman, S. 2010. Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake. World Medical & Health Policy, 2(2): 733. DOI: 10.2202/1948-4682.1069
DOI: https://doi.org/10.5334/cstp.568 | Journal eISSN: 2057-4991
Language: English
Submitted on: Sep 29, 2022
Accepted on: Apr 14, 2023
Published on: Jun 27, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Vyron Antoniou, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.