References
- 1BirdLife Finland. 2022. Liity jäseneksi. Available at:
https://www.birdlife.fi/liitytaitue/liity/ . [Last accessed 24 August 2022]. - 2Bonney, R, Shirk, JL, Phillips, TB, Wiggins, A, Ballard, HL, Miller-Rushing, AJ and Parrish, JK. 2014. Next Steps for Citizen Science. Science, 343(6178): 1436–1437. DOI: 10.1126/science.1251554
- 3Callaghan, CT, Poore, AGB, Mesaglio, T, Moles, AT, Nakagawa, S, Roberts, C, Cornwell, WK, et al. 2021. Three Frontiers for the Future of Biodiversity Research Using Citizen Science Data. BioScience, 71(1): 55–63. DOI: 10.1093/biosci/biaa131
- 4Camargo, U, Roslin, T and Ovaskainen, O. 2019. Spatio-temporal scaling of biodiversity in acoustic tropical bird communities. Ecography, 42(11): 1936–1947. DOI: 10.1111/ecog.04544
- 5Constantine, M and The Sound Approach. 2006. The Sound Approach to birding. Dorset, UK: The Sound Approach.
- 6Cornell Lab of Ornithology. 2022. Macaulay Library. Available at
https://www.macaulaylibrary.org/ . [Last accessed 24 August 2022]. - 7Farina, A, Pieretti, N and Piccioli, L. 2011. The soundscape methodology for long-term bird monitoring: A Mediterranean Europe case-study. Ecological Informatics, 6(6): 354–363. DOI: 10.1016/j.ecoinf.2011.07.004
- 8Franzoni, C, Poetz, M and Sauermann, H. 2021. Crowds, citizens, and science: a multi-dimensional framework and agenda for future research. Industry and Innovation, 1–34. DOI: 10.1080/13662716.2021.1976627
- 9Franzoni, C and Sauermann, H. 2014. Crowd science: The organization of scientific research in open collaborative projects. Research Policy, 43(1): 1–20. DOI: 10.1016/j.respol.2013.07.005
- 10Gibb, R, Browning, E, Glover-Kapfer, P & Jones, KE. 2019. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology and Evolution, 10(2): 169–185. DOI: 10.1111/2041-210X.13101
- 11Hill, AP, Prince, P, Piña Covarrubias, E, Doncaster, CP, Snaddon, JL and Rogers, A. 2018. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9(5): 1199–1211. DOI: 10.1111/2041-210X.12955
- 12Kahl, S, Wood, CM, Eibl, M and Klinck, H. 2021. BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61: 101236. DOI: 10.1016/j.ecoinf.2021.101236
- 13Krause, B and Farina, A. 2016. Using ecoacoustic methods to survey the impacts of climate change on biodiversity. Biological Conservation, 195: 245–254. DOI: 10.1016/j.biocon.2016.01.013
- 14Land-Zandstra, A, Agnello, G and Gültekin, YS. 2021.
Participants in Citizen Science . In K. Vohland, A. Land-Zandstra, L. Ceccaroni, R. Lemmens, J. Perelló, M. Ponti, R. Samson, & K. Wagenknecht (Eds.), The Science of Citizen Science (pp. 243–259). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-58278-4_13 - 15Lauha, P, Somervuo, P, Lehikoinen, P, Seibold, S, Geres, L, Richter, T and Ovaskainen, O. 2022. Domain-specific neural networks improve automated bird sound recognition already with small amount of local data. Methods in Ecology and Evolution, 13: 2799–2810. DOI: 10.1111/2041-210X.14003
- 16LeBien, J, Zhong, M, Campos-Cerqueira, M, Velev, JP, Dodhia, R, Ferres, JL and Aide, TM. 2020. A pipeline for identification of bird and frog species in tropical soundscape recordings using a convolutional neural network. Ecological Informatics, 59: 101113. DOI: 10.1016/j.ecoinf.2020.101113
- 17Lintott, C, Schawinski, K, Bamford, S, Slosar, A, Land, K, Thomas, D, Vandenberg, J, et al. 2011. Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies*. Monthly Notices of the Royal Astronomical Society, 410(1): 166–178. DOI: 10.1111/j.1365-2966.2010.17432.x
- 18Lintott, CJ, Schawinski, K, Slosar, A, Land, K, Bamford, S, Thomas, D, Vandenberg, J, et al. 2008. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey*. Monthly Notices of the Royal Astronomical Society, 389(3): 1179–1189. DOI: 10.1111/j.1365-2966.2008.13689.x
- 19Loiselle, BA, Howell, CA, Graham, CH, Goerck, JM, Brooks, T, Smith, KG and Williams, PH. 2003. Avoiding Pitfalls of Using Species Distribution Models in Conservation Planning. Conservation Biology, 17(6): 1591–1600. DOI: 10.1111/j.1523-1739.2003.00233.x
- 20Mengersen, K, Peterson, EE, Clifford, S, Ye, N, Kim, J, Bednarz, T, Hunter, V, et al. 2017. Modelling imperfect presence data obtained by citizen science. Environmetrics, 28(5):
e2446 . DOI: 10.1002/env.2446 - 21Ovaskainen, O, Moliterno de Camargo, U and Somervuo, P. 2018. Animal Sound Identifier (ASI): software for automated identification of vocal animals. Ecology Letters, 21(8): 1244–1254. DOI: 10.1111/ele.13092
- 22Papadopoulos, T, Roberts, S and Willis, K. 2015. Detecting bird sound in unknown acoustic background using crowdsourced training data. arXiv preprint arXiv:1505.06443.
- 23Ruff, ZJ, Lesmeister, DB, Duchac, LS, Padmaraju, BK and Sullivan, CM. 2020. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sensing in Ecology and Conservation, 6(1): 79–92. DOI: 10.1002/rse2.125
- 24Salamon, J and Bello, JP. 2017. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal processing letters, 24(3): 279–283. DOI: 10.1109/LSP.2017.2657381
- 25Snyder, R, Clark, M, Salas, L, Schackwitz, W, Leland, D, Stephens, T, Clas, K, et al. 2022. The Soundscapes to Landscapes Project: Development of a Bioacoustics-Based Monitoring Workflow with Multiple Citizen Scientist Contributions. Citizen Science: Theory and Practice, 7(1): 24. DOI: 10.5334/cstp.391
- 26Stevenson, RD, Suomela, T, Kim, H and He, Y. 2021. Seven Primary Data Types in Citizen Science Determine Data Quality Requirements and Methods. Frontiers in Climate, 3. DOI: 10.3389/fclim.2021.645120
- 27Stowell, D, Wood, MD, Pamuła, H, Stylianou, Y and Glotin, H. 2019. Automatic acoustic detection of birds through deep learning: The first Bird Audio Detection challenge. Methods in Ecology and Evolution, 10(3): 368–380. DOI: 10.1111/2041-210X.13103
- 28Van Brussel, S and Huyse, H. 2019. Citizen science on speed? Realising the triple objective of scientific rigour, policy influence and deep citizen engagement in a large-scale citizen science project on ambient air quality in Antwerp. Journal of Environmental Planning and Management, 62(3): 534–551. DOI: 10.1080/09640568.2018.1428183
- 29Walmsley, M, Smith, L, Lintott, C, Gal, Y, Bamford, S, Dickinson, H, Wright, D, et al. 2020. Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning. Monthly Notices of the Royal Astronomical Society, 491(2): 1554–1574. DOI: 10.1093/mnras/stz2816
- 30Warblr Ltd. 2022. Warblr: Identify UK bird songs. 25.1.2022. Available at
https://www.warblr.co.uk/ . [Last accessed 24 August 2022]. - 31Xeno-canto Foundation. 2022. Xeno-Canto – sharing bird sounds from around the world. 25.1.2022. Available at
https://xeno-canto.org/ . [Last accessed 24 August 2022].
