Have a personal or library account? Click to login
Disaster, Infrastructure and Participatory Knowledge: The Planetary Response Network Cover

References

  1. 1Battersby, SE, Hodgson, ME and Wang, J. 2012. Spatial resolution imagery requirements for identifying structure damage in a hurricane disaster: A cognitive approach. Photogrammetric Engineering and Remote Sensing, 78(6): 625635. DOI: 10.14358/PERS.78.6.625
  2. 2Bonney, R, Ballard, H, Jordan, R, McCallie, E, Phillips, T, Shirk, J and Wilderman, CC. 2009. Public participation in scientific research: Defining the field and assessing its potential for informal science education. Washington, DC. Available at: https://eric.ed.gov/?id=ED519688.
  3. 3Brown, A, Franken, P, Bonner, S, Dolezal, N and Moross, J. 2016. Safecast: Successful citizen-science for radiation measurement and communication after Fukushima. In: Journal of Radiological Protection, S82S101. Institute of Physics Publishing. DOI: 10.1088/0952-4746/36/2/S82
  4. 4Chari, R, Blumenthal, M and Matthews, L. 2019. Community Citizen Science: From Promise to Action. Santa Monica, CA: RAND Corporation. DOI: 10.7249/RR2763
  5. 5Cox, J, Oh, EY, Simmons, BD, Lintott, C, Masters, KL, Greenhill, A, Graham, G and Holmes, K. 2015. Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects. Computing in Science and Engineering. IEEE Computer Society, 17(4): 2841. DOI: 10.1109/MCSE.2015.65
  6. 6Dailey, D and Starbird, K. 2014. Journalists as Crowdsourcerers: Responding to Crisis by Reporting with a Crowd. Computer Supported Cooperative Work: CSCW: An International Journal. 23(4–6): 445481. DOI: 10.1007/s10606-014-9208-z
  7. 7de Albuquerque, J, Herfort, B and Eckle, M. 2016. The tasks of the crowd: A typology of tasks in geographic information crowdsourcing and a case study in humanitarian mapping. Remote Sensing, MDPI AG, 8(10): 859. DOI: 10.3390/rs8100859
  8. 8Dittus, M, Quattrone, G and Capra, L. 2017. Mass participation during emergency response: Event-centric Crowdsourcing in Humanitarian mapping. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW, 12901303. New York, NY, USA. DOI: 10.1145/2998181.2998216
  9. 9Fritz, S, Fonte, C and See, L. 2017. The Role of Citizen Science in Earth Observation. Remote Sensing, 9(4): 357. DOI: 10.3390/rs9040357
  10. 10GDAL/OGR contributors. 2020. {GDAL/OGR} Geospatial Data Abstraction software Library. Available at: https://gdal.org. DOI: 10.22224/gistbok/2020.4.1
  11. 11Gold, M. 2019. Ten Principles of Citizen Science. London: European Citizen Science Association. DOI: 10.17605/OSF.IO/XPR2N
  12. 12Goodchild, MF and Glennon, JA. 2010. Crowdsourcing geographic information for disaster response: A research frontier. International Journal of Digital Earth, 3(3): 231241. DOI: 10.1080/17538941003759255
  13. 13Haklay, M. 2013. Citizen science and volunteered geographic information: Overview and typology of participation. In: Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice, 105122. Springer Netherlands. DOI: 10.1007/978-94-007-4587-2_7
  14. 14Harvard Humanitarian Initiative. 2011. Disaster Relief 2.0: The Future of Information Sharing in Humanitarian Emergencies. Washington, D.C. and Berkshire, UK. Available at: https://hhi.harvard.edu/publications/disaster-relief-20-future-information-sharing-humanitarian-emergencies.
  15. 15Hecker, S, Haklay, M, Bowser, A, Makuch, Z, Vogel, J and Bonn, A. 2019. Innovation in open science, society and policy – setting the agenda for citizen science. In: Citizen Science, 124. London: UCL Press. DOI: 10.2307/j.ctv550cf2.8
  16. 16Hughes, AL and Palen, L. 2009. Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, Inderscience Publishers, 6(3–4): 248260. DOI: 10.1504/IJEM.2009.031564
  17. 17Hughes, AL and Tapia, AH. 2015. Social Media in Crisis: When Professional Responders Meet Digital Volunteers. Journal of Homeland Security and Emergency Management, 12(3): 679706. DOI: 10.1515/jhsem-2014-0080
  18. 18Hunter, JD. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science Engineering, 9(3): 9095. DOI: 10.1109/MCSE.2007.55
  19. 19Isupova, O, Li, Y, Kuzin, D, Roberts, SJ, Willis, K and Reece, S. 2018. BCCNet: Bayesian classifier combination neural network. In NeurlPS Workshop on Machine Learning for the Developing World. Available at: https://arxiv.org/abs/1811.12258.
  20. 20Katrak-Adefowora, R, Blickley, JL and Zellmer, AJ. 2020. Just-in-Time Training Improves Accuracy of Citizen Scientist Wildlife Identifications from Camera Trap Photos. Citizen Science: Theory and Practice, 5(1): 8. DOI: 10.5334/cstp.219
  21. 21Kosmala, M, Wiggins, A, Swanson, A and Simmons, BD. 2016. Assessing data quality in citizen science. Frontiers in Ecology and the Environment, 14(10): 551560. DOI: 10.1002/fee.1436
  22. 22Kuzin, D, Isupova, O, Simmons, BD and Reece, S. 2021. Disaster mapping from satellites: damage detection with crowdsourced point labels. In: 3rd Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response (NeurIPS 2021). Available at: https://arxiv.org/abs/2111.03693.
  23. 23Lintott, C and Zooniverse. 2010. What Makes A Good Zooniverse Project? The Zooniverse Blog. Available at https://blog.zooniverse.org/2010/06/30/what-makes-a-good-zooniverse-project/ (Last accessed: 23 January 2021).
  24. 24Lintott, CJ, Schawinski, K, Slosar, A, Land, K, Bamford, S, Thomas, D, Raddick, MJ, Nichol, RC, Szalay, A, Andreescu, D, Murray, P and Vandenberg, J. 2008. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 389: 11791189. DOI: 10.1111/j.1365-2966.2008.13689.x
  25. 25Liu, B. 2014. Crisis Crowdsourcing Framework: Designing Strategic Configurations of Crowdsourcing for the Emergency Management Domain. Computer Supported Cooperative Work: CSCW: An International Journal, 23(4–6): 389443. DOI: 10.1007/s10606-014-9204-3
  26. 26McKinney, W. 2010. Data Structures for Statistical Computing in Python. In Millman, J and van der Walt, S (eds.), Proceedings of the 9th Python in Science Conference, 5156. DOI: 10.25080/Majora-92bf1922-00a
  27. 27Meier, P. 2011. New information technologies and their impact on the humanitarian sector. International Review of the Red Cross, 93(884): 12391263. DOI: 10.1017/S1816383112000318
  28. 28Meier, P. 2012. Crisis mapping in action: How open source software and global volunteer networks are changing the world, one map at a time. Journal of Map and Geography Libraries, 89100. DOI: 10.1080/15420353.2012.663739
  29. 29Mulder, F, Ferguson, J, Groenewegen, P, Boersma, K and Wolbers, J. 2016. Questioning Big Data: Crowdsourcing crisis data towards an inclusive humanitarian response. Big Data & Society. DOI: 10.1177/2053951716662054
  30. 30Munro, R. 2013. Crowdsourcing and the crisis-affected community: Lessons learned and looking forward from Mission 4636. Information Retrieval, 16(2): 210266. DOI: 10.1007/s10791-012-9203-2
  31. 31Oswald, E. 2020. Getting to Know Other Ways of Knowing: Boundary Experiences in Citizen Science. Citizen Science: Theory and Practice, 5(1): 25. DOI: 10.5334/cstp.310
  32. 32Parrish, JK, Burgess, H, Weltzin, JF, Fortson, L, Wiggins, A and Simmons, BD. 2018. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design. Integrative and Comparative Biology, 58(1): 150160. DOI: 10.1093/icb/icy032
  33. 33Popoola, A, Krasnoshtan, D, Toth, A-P, Naroditskiy, V, Castillo, C, Meier, P and Rahwan, I. 2013. Information verification during natural disasters. In Proceedings of the 22nd International Conference on World Wide Web – WWW ’13 Companion, 10291032. New York, New York, USA: ACM Press. DOI: 10.1145/2487788.2488111
  34. 34QGIS Development Team. 2009. QGIS Geographic Information System. Available at: http://qgis.org.
  35. 35Ramchurn, SD, Huynh, TD, Wu, F, Ikuno, Y, Flann, J, Moreau, L, Fischer, JE, Jiang, W, Rodden, T, Simpson, E, Reece, S, Roberts, S and Jennings, NR. 2016. A disaster response system based on human-agent collectives. Journal of Artificial Intelligence Research, 57: 661708. DOI: 10.1613/jair.5098
  36. 36Rehman Shahid, A and Elbanna, A. 2015. The Impact of Crowdsourcing on Organisational Practices: The Case of Crowdmapping. ECIS 2015 Completed Research Papers. DOI: 10.18151/7217474
  37. 37Resnik, DB, Elliott, KC and Miller, AK. 2015. A framework for addressing ethical issues in citizen science. Environmental Science and Policy. Elsevier Ltd, 54: 475481. DOI: 10.1016/j.envsci.2015.05.008
  38. 38See, L, Comber, A, Salk, C, Fritz, S, van der Velde, M, Perger, C, Schill, C, McCallum, I, Kraxner, F and Obersteiner, M. 2013. Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts. PLoS ONE, 8(7): e69958. DOI: 10.1371/journal.pone.0069958
  39. 39Sharma, P and Joshi, A. 2019. Challenges of using big data for humanitarian relief: lessons from the literature. Journal of Humanitarian Logistics and Supply Chain Management, 10(4): 423446. DOI: 10.1108/JHLSCM-05-2018-0031
  40. 40Shirk, JL, Ballard, HL, Wilderman, CC, Phillips, T, Wiggins, A, Jordan, R, McCallie, E, Minarchek, M, Lewenstein, BV, Krasny, ME and Bonney, R. 2012. Public participation in scientific research: A framework for deliberate design. Ecology and Society. 17(2). DOI: 10.5751/ES-04705-170229
  41. 41Simmons, BD, Lintott, C, Willett, KW, Masters, KL, Kartaltepe, JS, Häußler, B, Kaviraj, S, Krawczyk, C, Kruk, SJ, McIntosh, DH, Smethurst, RJ, Nichol, RC, Scarlata, C, Schawinski, K, Conselice, CJ, Almaini, O, Ferguson, HC, Fortson, L, Hartley, W, Kocevski, D, Koekemoer, AM, Mortlock, A, Newman, JA, Bamford, SP, Grogin, NA, Lucas, RA, Hathi, NP, McGrath, E, Peth, M, Pforr, J, Rizer, Z, Wuyts, S, Barro, G, Bell, E F, Castellano, M, Dahlen, T, Dekel, A, Ownsworth, J, Faber, SM, Finkelstein, SL, Fontana, A, Galametz, A, Grützbauch, R, Koo, D, Lotz, J, Mobasher, B, Mozena, M, Salvato, M and Wiklind, T. 2017. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS. Monthly Notices of the Royal Astronomical Society, 464(4): 44204447. DOI: 10.1093/mnras/stw2587
  42. 42Simpson, E, Roberts, S, Psorakis, I and Smith, A. 2013. Dynamic Bayesian combination of multiple imperfect classifiers. In: Guy, T, Karny, M and Wolpert, D (eds.), Decision Making and Imperfection, 474: 135. DOI: 10.1007/978-3-642-36406-8_1
  43. 43Simpson, R, Page, KR and De Roure, D. 2014. Zooniverse: Observing the World’s Largest Citizen Science Platform. In Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion, Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee (WWW Companion ’14), 10491054. DOI: 10.1145/2567948.2579215
  44. 44Skarlatidou, A and Haklay, M. (eds.) 2021. Geographic Citizen Science Design, Geographic Citizen Science Design. London: UCL Press. DOI: 10.14324/111.9781787356122
  45. 45Spiers, H, Swanson, A, Fortson, L, Simmons, B, Trouille, L, Blickhan, S and Lintott, C. 2019. Everyone counts? Design considerations in online citizen science. Journal of Science Communication. Sissa Medialab, 18(1): A04. DOI: 10.22323/2.18010204
  46. 46Strandh, V and Eklund, N. 2018. Emergent groups in disaster research: Varieties of scientific observation over time and across studies of nine natural disasters. Journal of Contingencies and Crisis Management, 26(3): 329337. DOI: 10.1111/1468-5973.12199
  47. 47Swanson, A, Kosmala, M, Lintott, C, Simpson, R, Smith, A and Packer, C. 2015. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Scientific Data, 2(1): 150026. DOI: 10.1038/sdata.2015.26
  48. 48Tapia, AH and Moore, K. 2014. Good Enough is Good Enough: Overcoming Disaster Response Organizations’ Slow Social Media Data Adoption. Computer Supported Cooperative Work: CSCW: An International Journal, 23(4–6): 483512. DOI: 10.1007/s10606-014-9206-1
  49. 49Taylor, MB. 2005. TOPCAT STIL: Starlink Table/VOTable Processing Software. In Shopbell, P, Britton, M and Ebert, R (eds.), Astronomical Data Analysis Software and Systems XIV, 29. Astronomical Society of the Pacific Conference Series.
  50. 50The ImageMagick Development Team. 2021. ImageMagick. Available at: https://imagemagick.org.
  51. 51Turk, C. 2020. Any Portal in a Storm? Collaborative and crowdsourced maps in response to Typhoon Yolanda/Haiyan, Philippines. Journal of Contingencies and Crisis Management, 28(4): 416431. DOI: 10.1111/1468-5973.12330
  52. 52van der Walt, S, Colbert, SC and Varoquaux, G. 2011. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science Engineering, 13(2): 2230. DOI: 10.1109/MCSE.2011.37
  53. 53Weber, E and Kané, H. 2020. Building Disaster Damage Assessment in Satellite Imagery with Multi-Temporal Fusion, arXiv:2004.05525.
  54. 54Westrope, C, Banick, R and Levine, M. 2014. Groundtruthing OpenStreetMap building damage assessment. In Procedia Engineering, 2939. Elsevier Ltd. DOI: 10.1016/j.proeng.2014.07.035
  55. 55Wiggins, A and Crowston, K. 2011. From conservation to crowdsourcing: A typology of citizen science. In Proceedings of the Annual Hawaii International Conference on System Sciences. DOI: 10.1109/HICSS.2011.207
  56. 56Ziemke, J. 2012. Crisis Mapping: The Construction of a New Interdisciplinary Field? Journal of Map & Geography Libraries. Jen Ziemke, 8(2): 101117. DOI: 10.1080/15420353.2012.662471
  57. 57Zook, M, Graham, M, Shelton, T and Gorman, S. 2010. Volunteered Geographic Information and Crowdsourcing Disaster Relief: A Case Study of the Haitian Earthquake. World Medical & Health Policy. Wiley-Blackwell, 2(2): 632. DOI: 10.2202/1948-4682.1069
DOI: https://doi.org/10.5334/cstp.392 | Journal eISSN: 2057-4991
Language: English
Submitted on: Jan 30, 2021
Accepted on: Jan 24, 2022
Published on: May 19, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Brooke D. Simmons, Chris Lintott, Steven Reece, Campbell Allen, Grant R. M. Miller, Rebekah Yore, David Jones, Sascha T. Ishikawa, Tom Jardine-McNamara, Amy R. Boyer, James E. O’Donnell, Lucy Fortson, Danil Kuzin, Adam McMaster, Laura Trouille, Zach Wolfenbarger, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.