References
- 1Battersby, SE, Hodgson, ME and Wang, J. 2012. Spatial resolution imagery requirements for identifying structure damage in a hurricane disaster: A cognitive approach. Photogrammetric Engineering and Remote Sensing, 78(6): 625–635. DOI: 10.14358/PERS.78.6.625
- 2Bonney, R, Ballard, H, Jordan, R, McCallie, E, Phillips, T, Shirk, J and Wilderman, CC. 2009. Public participation in scientific research: Defining the field and assessing its potential for informal science education. Washington, DC. Available at:
https://eric.ed.gov/?id=ED519688 . - 3Brown, A, Franken, P, Bonner, S, Dolezal, N and Moross, J. 2016.
Safecast: Successful citizen-science for radiation measurement and communication after Fukushima . In: Journal of Radiological Protection, S82–S101. Institute of Physics Publishing. DOI: 10.1088/0952-4746/36/2/S82 - 4Chari, R, Blumenthal, M and Matthews, L. 2019. Community Citizen Science: From Promise to Action. Santa Monica, CA: RAND Corporation. DOI: 10.7249/RR2763
- 5Cox, J, Oh, EY, Simmons, BD, Lintott, C, Masters, KL, Greenhill, A, Graham, G and Holmes, K. 2015.
Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects . Computing in Science and Engineering. IEEE Computer Society, 17(4): 28–41. DOI: 10.1109/MCSE.2015.65 - 6Dailey, D and Starbird, K. 2014. Journalists as Crowdsourcerers: Responding to Crisis by Reporting with a Crowd. Computer Supported Cooperative Work: CSCW: An International Journal. 23(4–6): 445–481. DOI: 10.1007/s10606-014-9208-z
- 7de Albuquerque, J, Herfort, B and Eckle, M. 2016. The tasks of the crowd: A typology of tasks in geographic information crowdsourcing and a case study in humanitarian mapping. Remote Sensing, MDPI AG, 8(10): 859. DOI: 10.3390/rs8100859
- 8Dittus, M, Quattrone, G and Capra, L. 2017. Mass participation during emergency response: Event-centric Crowdsourcing in Humanitarian mapping. In Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW, 1290–1303. New York, NY, USA. DOI: 10.1145/2998181.2998216
- 9Fritz, S, Fonte, C and See, L. 2017. The Role of Citizen Science in Earth Observation. Remote Sensing, 9(4): 357. DOI: 10.3390/rs9040357
- 10GDAL/OGR contributors. 2020. {GDAL/OGR} Geospatial Data Abstraction software Library. Available at:
https://gdal.org . DOI: 10.22224/gistbok/2020.4.1 - 11Gold, M. 2019. Ten Principles of Citizen Science. London: European Citizen Science Association. DOI: 10.17605/OSF.IO/XPR2N
- 12Goodchild, MF and Glennon, JA. 2010. Crowdsourcing geographic information for disaster response: A research frontier. International Journal of Digital Earth, 3(3): 231–241. DOI: 10.1080/17538941003759255
- 13Haklay, M. 2013.
Citizen science and volunteered geographic information: Overview and typology of participation . In: Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice, 105–122. Springer Netherlands. DOI: 10.1007/978-94-007-4587-2_7 - 14Harvard Humanitarian Initiative. 2011. Disaster Relief 2.0: The Future of Information Sharing in Humanitarian Emergencies. Washington, D.C. and Berkshire, UK. Available at:
https://hhi.harvard.edu/publications/disaster-relief-20-future-information-sharing-humanitarian-emergencies . - 15Hecker, S, Haklay, M, Bowser, A, Makuch, Z, Vogel, J and Bonn, A. 2019.
Innovation in open science, society and policy – setting the agenda for citizen science . In: Citizen Science, 1–24. London: UCL Press. DOI: 10.2307/j.ctv550cf2.8 - 16Hughes, AL and Palen, L. 2009. Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, Inderscience Publishers, 6(3–4): 248–260. DOI: 10.1504/IJEM.2009.031564
- 17Hughes, AL and Tapia, AH. 2015. Social Media in Crisis: When Professional Responders Meet Digital Volunteers. Journal of Homeland Security and Emergency Management, 12(3): 679–706. DOI: 10.1515/jhsem-2014-0080
- 18Hunter, JD. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science Engineering, 9(3): 90–95. DOI: 10.1109/MCSE.2007.55
- 19Isupova, O, Li, Y, Kuzin, D, Roberts, SJ, Willis, K and Reece, S. 2018. BCCNet: Bayesian classifier combination neural network. In NeurlPS Workshop on Machine Learning for the Developing World. Available at:
https://arxiv.org/abs/1811.12258 . - 20Katrak-Adefowora, R, Blickley, JL and Zellmer, AJ. 2020. Just-in-Time Training Improves Accuracy of Citizen Scientist Wildlife Identifications from Camera Trap Photos. Citizen Science: Theory and Practice, 5(1): 8. DOI: 10.5334/cstp.219
- 21Kosmala, M, Wiggins, A, Swanson, A and Simmons, BD. 2016. Assessing data quality in citizen science. Frontiers in Ecology and the Environment, 14(10): 551–560. DOI: 10.1002/fee.1436
- 22Kuzin, D, Isupova, O, Simmons, BD and Reece, S. 2021. Disaster mapping from satellites: damage detection with crowdsourced point labels. In: 3rd Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response (NeurIPS 2021). Available at:
https://arxiv.org/abs/2111.03693 . - 23Lintott, C and Zooniverse. 2010. What Makes A Good Zooniverse Project? The Zooniverse Blog. Available at
https://blog.zooniverse.org/2010/06/30/what-makes-a-good-zooniverse-project/ (Last accessed: 23 January 2021). - 24Lintott, CJ, Schawinski, K, Slosar, A, Land, K, Bamford, S, Thomas, D, Raddick, MJ, Nichol, RC, Szalay, A, Andreescu, D, Murray, P and Vandenberg, J. 2008. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 389: 1179–1189. DOI: 10.1111/j.1365-2966.2008.13689.x
- 25Liu, B. 2014. Crisis Crowdsourcing Framework: Designing Strategic Configurations of Crowdsourcing for the Emergency Management Domain. Computer Supported Cooperative Work: CSCW: An International Journal, 23(4–6): 389–443. DOI: 10.1007/s10606-014-9204-3
- 26McKinney, W. 2010. Data Structures for Statistical Computing in Python. In Millman, J and van der Walt, S (eds.), Proceedings of the 9th Python in Science Conference, 51–56. DOI: 10.25080/Majora-92bf1922-00a
- 27Meier, P. 2011. New information technologies and their impact on the humanitarian sector. International Review of the Red Cross, 93(884): 1239–1263. DOI: 10.1017/S1816383112000318
- 28Meier, P. 2012. Crisis mapping in action: How open source software and global volunteer networks are changing the world, one map at a time. Journal of Map and Geography Libraries, 89–100. DOI: 10.1080/15420353.2012.663739
- 29Mulder, F, Ferguson, J, Groenewegen, P, Boersma, K and Wolbers, J. 2016. Questioning Big Data: Crowdsourcing crisis data towards an inclusive humanitarian response. Big Data & Society. DOI: 10.1177/2053951716662054
- 30Munro, R. 2013. Crowdsourcing and the crisis-affected community: Lessons learned and looking forward from Mission 4636. Information Retrieval, 16(2): 210–266. DOI: 10.1007/s10791-012-9203-2
- 31Oswald, E. 2020. Getting to Know Other Ways of Knowing: Boundary Experiences in Citizen Science. Citizen Science: Theory and Practice, 5(1): 25. DOI: 10.5334/cstp.310
- 32Parrish, JK, Burgess, H, Weltzin, JF, Fortson, L, Wiggins, A and Simmons, BD. 2018. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design. Integrative and Comparative Biology, 58(1): 150–160. DOI: 10.1093/icb/icy032
- 33Popoola, A, Krasnoshtan, D, Toth, A-P, Naroditskiy, V, Castillo, C, Meier, P and Rahwan, I. 2013.
Information verification during natural disasters . In Proceedings of the 22nd International Conference on World Wide Web – WWW ’13 Companion, 1029–1032. New York, New York, USA: ACM Press. DOI: 10.1145/2487788.2488111 - 34QGIS Development Team. 2009. QGIS Geographic Information System. Available at:
http://qgis.org . - 35Ramchurn, SD, Huynh, TD, Wu, F, Ikuno, Y, Flann, J, Moreau, L, Fischer, JE, Jiang, W, Rodden, T, Simpson, E, Reece, S, Roberts, S and Jennings, NR. 2016. A disaster response system based on human-agent collectives. Journal of Artificial Intelligence Research, 57: 661–708. DOI: 10.1613/jair.5098
- 36Rehman Shahid, A and Elbanna, A. 2015. The Impact of Crowdsourcing on Organisational Practices: The Case of Crowdmapping. ECIS 2015 Completed Research Papers. DOI: 10.18151/7217474
- 37Resnik, DB, Elliott, KC and Miller, AK. 2015.
A framework for addressing ethical issues in citizen science . Environmental Science and Policy. Elsevier Ltd, 54: 475–481. DOI: 10.1016/j.envsci.2015.05.008 - 38See, L, Comber, A, Salk, C, Fritz, S, van der Velde, M, Perger, C, Schill, C, McCallum, I, Kraxner, F and Obersteiner, M. 2013. Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts. PLoS ONE, 8(7):
e69958 . DOI: 10.1371/journal.pone.0069958 - 39Sharma, P and Joshi, A. 2019. Challenges of using big data for humanitarian relief: lessons from the literature. Journal of Humanitarian Logistics and Supply Chain Management, 10(4): 423–446. DOI: 10.1108/JHLSCM-05-2018-0031
- 40Shirk, JL, Ballard, HL, Wilderman, CC, Phillips, T, Wiggins, A, Jordan, R, McCallie, E, Minarchek, M, Lewenstein, BV, Krasny, ME and Bonney, R. 2012. Public participation in scientific research: A framework for deliberate design. Ecology and Society. 17(2). DOI: 10.5751/ES-04705-170229
- 41Simmons, BD, Lintott, C, Willett, KW, Masters, KL, Kartaltepe, JS, Häußler, B, Kaviraj, S, Krawczyk, C, Kruk, SJ, McIntosh, DH, Smethurst, RJ, Nichol, RC, Scarlata, C, Schawinski, K, Conselice, CJ, Almaini, O, Ferguson, HC, Fortson, L, Hartley, W, Kocevski, D, Koekemoer, AM, Mortlock, A, Newman, JA, Bamford, SP, Grogin, NA, Lucas, RA, Hathi, NP, McGrath, E, Peth, M, Pforr, J, Rizer, Z, Wuyts, S, Barro, G, Bell, E F, Castellano, M, Dahlen, T, Dekel, A, Ownsworth, J, Faber, SM, Finkelstein, SL, Fontana, A, Galametz, A, Grützbauch, R, Koo, D, Lotz, J, Mobasher, B, Mozena, M, Salvato, M and Wiklind, T. 2017. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS. Monthly Notices of the Royal Astronomical Society, 464(4): 4420–4447. DOI: 10.1093/mnras/stw2587
- 42Simpson, E, Roberts, S, Psorakis, I and Smith, A. 2013. Dynamic Bayesian combination of multiple imperfect classifiers. In: Guy, T, Karny, M and Wolpert, D (eds.), Decision Making and Imperfection, 474: 1–35. DOI: 10.1007/978-3-642-36406-8_1
- 43Simpson, R, Page, KR and De Roure, D. 2014. Zooniverse: Observing the World’s Largest Citizen Science Platform. In Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion, Republic and Canton of Geneva, Switzerland:
International World Wide Web Conferences Steering Committee (WWW Companion ’14) , 1049–1054. DOI: 10.1145/2567948.2579215 - 44Skarlatidou, A and Haklay, M. (eds.) 2021. Geographic Citizen Science Design, Geographic Citizen Science Design. London: UCL Press. DOI: 10.14324/111.9781787356122
- 45Spiers, H, Swanson, A, Fortson, L, Simmons, B, Trouille, L, Blickhan, S and Lintott, C. 2019.
Everyone counts? Design considerations in online citizen science . Journal of Science Communication. Sissa Medialab, 18(1): A04. DOI: 10.22323/2.18010204 - 46Strandh, V and Eklund, N. 2018. Emergent groups in disaster research: Varieties of scientific observation over time and across studies of nine natural disasters. Journal of Contingencies and Crisis Management, 26(3): 329–337. DOI: 10.1111/1468-5973.12199
- 47Swanson, A, Kosmala, M, Lintott, C, Simpson, R, Smith, A and Packer, C. 2015. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Scientific Data, 2(1): 150026. DOI: 10.1038/sdata.2015.26
- 48Tapia, AH and Moore, K. 2014. Good Enough is Good Enough: Overcoming Disaster Response Organizations’ Slow Social Media Data Adoption. Computer Supported Cooperative Work: CSCW: An International Journal, 23(4–6): 483–512. DOI: 10.1007/s10606-014-9206-1
- 49Taylor, MB. 2005. TOPCAT STIL: Starlink Table/VOTable Processing Software. In Shopbell, P, Britton, M and Ebert, R (eds.), Astronomical Data Analysis Software and Systems XIV, 29. Astronomical Society of the Pacific Conference Series.
- 50The ImageMagick Development Team. 2021. ImageMagick. Available at:
https://imagemagick.org . - 51Turk, C. 2020. Any Portal in a Storm? Collaborative and crowdsourced maps in response to Typhoon Yolanda/Haiyan, Philippines. Journal of Contingencies and Crisis Management, 28(4): 416–431. DOI: 10.1111/1468-5973.12330
- 52van der Walt, S, Colbert, SC and Varoquaux, G. 2011. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science Engineering, 13(2): 22–30. DOI: 10.1109/MCSE.2011.37
- 53Weber, E and Kané, H. 2020. Building Disaster Damage Assessment in Satellite Imagery with Multi-Temporal Fusion, arXiv:2004.05525.
- 54Westrope, C, Banick, R and Levine, M. 2014.
Groundtruthing OpenStreetMap building damage assessment . In Procedia Engineering, 29–39. Elsevier Ltd. DOI: 10.1016/j.proeng.2014.07.035 - 55Wiggins, A and Crowston, K. 2011. From conservation to crowdsourcing: A typology of citizen science. In Proceedings of the Annual Hawaii International Conference on System Sciences. DOI: 10.1109/HICSS.2011.207
- 56Ziemke, J. 2012.
Crisis Mapping: The Construction of a New Interdisciplinary Field? Journal of Map & Geography Libraries. Jen Ziemke, 8(2): 101–117. DOI: 10.1080/15420353.2012.662471 - 57Zook, M, Graham, M, Shelton, T and Gorman, S. 2010.
Volunteered Geographic Information and Crowdsourcing Disaster Relief: A Case Study of the Haitian Earthquake . World Medical & Health Policy. Wiley-Blackwell, 2(2): 6–32. DOI: 10.2202/1948-4682.1069
