Have a personal or library account? Click to login
Opportunities and Risks for Citizen Science in the Age of Artificial Intelligence Cover

Opportunities and Risks for Citizen Science in the Age of Artificial Intelligence

Open Access
|Nov 2019

References

  1. 1Australian Citizen Science Association. n.d. Who are we? What is citizen science? Available at https://citizenscience.org.au/who-we-are/ [Last accessed 28 September 2019].
  2. 2Barrat, J. 2013. Our final invention: Artificial intelligence and the end of the human era. St. Martin’s Press.
  3. 3Bonnet, P, Joly, A, Goëau, H, Champ, J, Vignau, C, Molino JF, Barthélémy, D and Boujemaa, N. 2016. Plant identification: man vs. machine. Multimedia Tools and Applications, 75(3): 1647. DOI: 10.1007/s11042-015-2607-4
  4. 4Bowser, A, Wiggins, A, Shanley, L, Preece, J and Henderson, S. 2014. Sharing data while protecting privacy in citizen science. Interactions, 21(1): 70. DOI: 10.1145/2540032
  5. 5Brownlow, J, Zaki, M, Neely, A and Urmetzer, F. 2015. Data and analytics-data-driven business models: A blueprint for innovation. University of Cambridge: Cambridge Service Alliance. Available at https://cambridgeservicealliance.eng.cam.ac.uk/resources/Downloads/Monthly%20Papers/2015FebruaryPaperTheDDBMInnovationBlueprint.pdf [Last accessed 28 September 2019].
  6. 6Buolamwini, J and Gebru, T. 2018. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency: Proceedings of Machine Learning Research, 81: 77. Available at http://proceedings.mlr.press/v81/buolamwini18a.html?mod=article_inline [Last accessed 28 September 2019].
  7. 7Campbell, J and Jensen, DE. 2019. The Promise and Peril of a Digital Ecosystem for the Planet: Key Decisions Are Needed in the Next 12 Months to Set in Motion a Robust Architecture and Governance Framework. Available at https://medium.com/@davidedjensen_99356/building-a-digital-ecosystem-for-the-planet-557c41225dc2 [Last accessed 29 September 2019].
  8. 8Carranza-Rojas, J, Goëau, H, Bonnet, P, Mata-Montero, E and Joly, A. 2017. Going deeper in the automated identification of Herbarium specimens. BMC Evolutionary Biology, 17(1): 181. DOI: 10.1186/s12862-017-1014-z
  9. 9Ceccaroni, L, Bowser, A and Brenton, P. 2017. Civic education and citizen science: Definitions, categories, knowledge representation. In Analyzing the Role of Citizen Science in Modern Research, 123. Hershey, PA, USA: IGI Global. DOI: 10.4018/978-1-5225-0962-2
  10. 10Ceccaroni, L, Velickovski, F, Blaas, M, Wernand, MR, Blauw, A and Subirats, L. 2018. Artificial Intelligence and Earth Observation to Explore Water Quality in the Wadden Sea. In: Mathieu, PP and Aubrecht, C (eds.), Earth Observation Open Science and Innovation. ISSI Scientific Report Series, 15, 311320. Cham, Switzerland: Springer. DOI: 10.1007/978-3-319-65633-5_18
  11. 11Chui, M, Manyika, J, Miremadi, M, Henke, N, Chung, R, Nel, P and Malhotra, S. 2018. Notes from the AI frontier: Insights from hundreds of use cases: Discussion Paper. McKinsey Global Institute. Available at https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning [Last accessed 28 September 2019].
  12. 12Cowls, J and Floridi, L. 2018. Prolegomena to a White Paper on an Ethical Framework for a Good AI Society. Available at SSRN: https://ssrn.com/abstract=3198732. DOI: 10.2139/ssrn.3198732
  13. 13Dawson, D, Schleiger, E, Horton, J, McLaughlin, J, Robinson, C, Quezada, G, Scowcroft, J and Hajkowicz, S. 2019. Artificial Intelligence: Australia’s Ethics Framework. Australia: Data61 CSIRO. Available at https://consult.industry.gov.au/strategic-policy/artificial-intelligence-ethics-framework/ [Last accessed 29 September 2019].
  14. 14Deng, DP, Chuang, TR, Shao, KT, Mai, GS, Lin, TE, Lemmens, R, Hsu, CH, Lin, HH and Kraak, MJ. 2012. Using social media for collaborative species identification and occurrence: issues, methods, and tools. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, 2229. Association for Computing Machinery. DOI: 10.1145/2442952.2442957
  15. 15Dennett, DC. 2017. From bacteria to Bach and back: The evolution of minds. Great Britain.
  16. 16Ellwood, ER, Dunckel, BA, Flemons, P, Guralnick, R, Nelson, G, Newman, G, Newman, S, Paul, D, Riccardi, G, Rios, N and Seltmann, KC. 2015. Accelerating the digitization of biodiversity research specimens through online public participation. BioScience, 65(4): 38396. DOI: 10.1093/biosci/biv005
  17. 17European Group on Ethics in Science and New Technologies. 2018. Statement on Artificial Intelligence, Robotics and ‘Autonomous’ Systems. European Commission, European Union. DOI: 10.2777/531856
  18. 18Feffer, M, Rudovic, O and Picard, RW. 2018. A Mixture of Personalized Experts for Human Affect Estimation. In: Machine Learning and Data Mining in Pattern Recognition, Perner, P. (ed.). MLDM 2018. Lecture Notes in Computer Science, 10935. Cham: Springer. DOI: 10.1007/978-3-319-96133-0_24
  19. 19GDPR. 2016. General Data Protection Regulation. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC.
  20. 20Grant, MJ and Booth, A. 2009. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26(2): 91108. DOI: 10.1111/j.1471-1842.2009.00848.x
  21. 21Hartmann, PM, Zaki, M, Feldmann, N and Neely, A. 2014. Big data for big business? A taxonomy of data-driven business models used by start-up firms. Cambridge: Cambridge Service Alliance, University of Cambridge. Available at https://cambridgeservicealliance.eng.cam.ac.uk/resources/Downloads/Monthly%20Papers/2014_March_DataDrivenBusinessModels.pdf [Last accessed 29 September 2019].
  22. 22Hecht, J. 2018. Managing expectations of artificial intelligence. Nature, 563: S141S143. DOI: 10.1038/d41586-018-07504-9
  23. 23Henke, N, Bughin, J, Chui, M, Manyika, J, Saleh, T, Wiseman, B and Sethupathy, G. 2016. The age of analytics: Competing in a data-driven world. McKinsey Global Institute. Available at https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-age-of-analytics-competing-in-a-data-driven-world [Last accessed 29 September 2019]
  24. 24Herzig, A, Lorini, E and Pearce, D. 2017. Social Intelligence. AI & Soc. London: Springer. DOI: 10.1007/s00146-017-0782-8
  25. 25Himel, S and Seamans, R. 2017. Artificial Intelligence, Incentives to Innovate, and Competition Policy. Competition Policy International Antitrust Chronicle. Available at https://www.competitionpolicyinternational.com/artificial-intelligence-incentives-to-innovate-and-competition-policy [Last accessed 29 September 2019].
  26. 26House of Lords Select Committee on Artificial Intelligence. 2018. AI in the UK: ready, willing and able? Authority of the House of Lords. Available at https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf [Last accessed 29 September 2019].
  27. 27IEEE. 2018. Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems. IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems. Version 2 – For Public Discussion. Available at https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead_v2.pdf [Last accessed 29 September 2019].
  28. 28Jaques, N, Kim, YL and Picard, R. 2016. Personality, Attitudes, and Bonding in Conversations. In: Traum, D, Swartout, W, Khooshabeh, P, Kopp, S, Scherer, S and Leuski, A (eds.), International Conference on Intelligent Virtual Agents, 378382. Cham: Springer. DOI: 10.1007/978-3-319-47665-0_37
  29. 29Joppa, LN. 2017. The case for technology investments in the environment. Nature, 552(7685): 325328. DOI: 10.1038/d41586-017-08675-7
  30. 30Joshi, S, Randall, N, Chiplunkar, S, Wattimena, T and Stavrianakis, K. 2018. ‘We’-A Robotic System to Extend Social Impact of Community Garden. In Proceeding HRI ‘18 Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, 349350. Association for Computing Machinery. DOI: 10.1145/3173386.3177817
  31. 31Kaplan, A and Haenlein, M. 2019. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1): 1525. DOI: 10.1016/j.bushor.2018.08.004
  32. 32Kido, T and Swan, M. 2015. Ambient Intelligence and Crowdsourced Genetics for Understanding Loss Aversion in Decision Making. 2015 Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium Series. Ambient Intelligence for Health and Cognitive Enhancement. Available at https://www.aaai.org/ocs/index.php/SSS/SSS15/paper/viewPaper/10338 [Last accessed 29 September 2019].
  33. 33Korot, E, Wood, E, Weiner, A, Sim, DA and Trese, M. 2019. A renaissance of teleophthalmology through artificial intelligence. Eye, 33: 861863. DOI: 10.1038/s41433-018-0324-8
  34. 34Krombholz, K, Merkl, D and Weippl, E. 2012. Fake identities in social media: A case study on the sustainability of the Facebook business model. Journal of Service Science Research, 4(2): 175212. DOI: 10.1007/s12927-012-0008-z
  35. 35Kumar, N, Belhumeur, PN, Biswas, A, Jacobs, DW, Kress, WJ, Lopez, IC and Soares, JV. 2012. Leafsnap: A computer vision system for automatic plant species identification. In: Fitzgibbon, A, Lazebnik, S, Perona, P, Sato, Y and Schmid, C (eds.), European Conference on Computer Vision, 502516. Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-33709-3_36
  36. 36Lahoz-Monfort, J, Chadès, I, Davies, A, Fegraus, E, Game, E, Guillera-Arroita, G, Harcourt, R, Indraswari, K, McGowan, J, Oliver, JL, Refisch, J, Rhodes, J, Roe, P, Rogers, A, Ward, A, Watson, D, Watson, J, Wintle, B and Joppa, L. 2019. A Call for International Leadership and Coordination to Realize the Potential of Conservation Technology. BioScience. 69(10): 823832. DOI: 10.1093/biosci/biz090
  37. 37Le, QV, Monga, R, Devin, M, Chen, K, Corrado, GS, Dean, J and Ng, AY. 2013. Building high-level features using large scale unsupervised learning. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 85958598. Vancouver, BC, Canada: IEEE. DOI: 10.1109/ICASSP.2013.6639343
  38. 38Leavy, S. 2018. Gender bias in Artificial Intelligence: The Need for Diversity and Gender Theory in Machine Learning. Proceedings of the 1st International Workshop on Gender Equality in Software Engineering, 1416. DOI: 10.1145/3195570.3195580
  39. 39Mac Aodha, O, Gibb, R, Barlow, KE, Browning, E, Firman, M, Freeman, R, Harder, B, Kinsey, L, Mead, GR, Newson, SE, Pandourski, I, Parsons, S, Russ, J, Szodoray-Paradi, A, Szodoray-Paradi, F, Tilova, E, Girolami, M, Brostow, G and Jones, KE. 2018. Bat Detective—Deep Learning Tools for Bat Acoustic Signal Detection. PLOS Computational Biology, 14(3): e1005995. DOI: 10.1371/journal.pcbi.1005995
  40. 40MacDonald, EA, Case, NA, Clayton, JH, Hall, MK, Heavner, M, Lalone, N, Patel, KG and Tapia, A. 2015. Aurorasaurus: A citizen science platform for viewing and reporting the aurora. Space Weather, 13(9): 548559. DOI: 10.1002/2015SW001214
  41. 41Mayer-Schönberger, V and Cukier, K. 2013. Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt.
  42. 42McKinstry, C. 2009. Mind as Space. In: Epstein, R, Roberts, G and Beber, G (eds.), Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer, 283299. Dordrecht: Springer. DOI: 10.1007/978-1-4020-6710-5
  43. 43Miller, T. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267: 138. DOI: 10.1016/j.artint.2018.07.007
  44. 44Mims, C. 2018. Tech’s Titans Tiptoe Toward Monopoly: Amazon, Facebook and Google may be repeating the history of steel, utility, rail and telegraph empires past—while Apple appears vulnerable. Wall Street Journal. Available at https://www.wsj.com/articles/techs-titans-tiptoe-toward-monopoly-1527783845 [Last accessed 29 September 2019].
  45. 45Müller, VC (ed.). 2016. Risks of artificial intelligence. CRC Press. DOI: 10.1201/b19187
  46. 46Müller, VC and Bostrom, N. 2016. Future progress in artificial intelligence: A survey of expert opinion. In: Fundamental issues of artificial intelligence, 555572. Cham: Springer. DOI: 10.1007/978-3-319-26485-1_33
  47. 47Parham, J, Stewart, C, Crall, J, Rubenstein, D, Holmberg, J and Berger-Wolf, T. 2018. An Animal Detection Pipeline for Identification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 10751083. IEEE. DOI: 10.1109/WACV.2018.00123
  48. 48Pedemonte, E. 2016. Google, Facebook, the New Monopolies and Silicon Valley Ideologues. DigitCult – Scientific Journal on Digital Cultures, 1(2): 2734. DOI: 10.4399/97888548960933
  49. 49Picard, RW. 1995. Affective Computing. M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 321.
  50. 50Pichai, S. 2018. AI at Google: our principles, 7 June 2018. The Keyword. Available at https://www.blog.google/technology/ai/ai-principles/ [Last accessed 29 September 2019].
  51. 51Poole, D, Mackworth, A and Goebel, R. 1998. Computational intelligence: A logical approach. New York: Oxford University Press.
  52. 52Ramamoorthy, A and Yampolskiy, R. 2018. Beyond mad? the race for artificial general intelligence. ITU Journal: ICT Discoveries, Special Issue No. 1, 2 Feb. 2018.
  53. 53Roger, E, Tegart, P, Dowsett, R, Kinsela, MA, Harley, MD and Ortac, G. 2019. Maximising the potential of citizen science in New South Wales. Australian Zoologist. DOI: 10.7882/AZ.2019.023
  54. 54Rogers, MA and Aikawa, E. 2019. Cardiovascular calcification: Artificial intelligence and big data accelerate mechanistic discovery. Nature Reviews Cardiology, 16(5): 261274. DOI: 10.1038/s41569-018-0123-8
  55. 55Russakovsky, O, Deng, J, Su, H, Krause, J, Satheesh, S, Ma, S, Huang, Z, Karpathy, A, Khosla, A, Bernstein, M, Berg, AC and Fei-Fei, L. 2015. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3): 211252. DOI: 10.1007/s11263-015-0816-y
  56. 56Russell, KN, Do, MT, Huff, JC and Platnick, NI. 2007. Introducing SPIDA-web: Wavelets, neural networks and Internet accessibility in an image-based automated identification system. In: Automated Taxon Identification in Systematics: Theory, Approaches and Applications, 131149. DOI: 10.1201/9781420008074
  57. 57Russell, SJ and Norvig, P. 2016. Artificial intelligence: A modern approach. USA: Pearson Education Limited.
  58. 58Scherer, MU. 2016. Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law Technology, 29(2): 353400. Available at https://heinonline.org/HOL/P?h=hein.journals/hjlt29&i=365 [Last accessed 29 September 2019].
  59. 59Schüritz, R, Seebacher, S and Dorner, R. 2017. Capturing value from data: Revenue models for data-driven services. In: Proceedings of the 50th Hawaii International Conference on System Sciences. DOI: 10.24251/HICSS.2017.648
  60. 60See, L, Carlson, T, Haklay, M, Oliver, JL, Fraisl, D, Mondardini, R, Brocklehurst, M, Shanley, L, Schade, S, Wehn, U, Abrate, T, Anstee, J, Arnold, S, Billot, M, Campbell, J, Espey, J, Gold, M, Hager, G, He, S, Hepburn, L, Hsu, A, Long, D, Maso, J, McCallum, I, Muniafu, M, Moorthy, I, Obersteiner, M, Parker, A, Weisspflug, M and West, S. 2019. Citizen Science and the United Nations Sustainable Development Goals. Nature Sustainability. (in press).
  61. 61Shaw, G. 2019. The Future Computed: Artificial Intelligence and its Role in Society. Redmond, WA: Microsoft Corporation. Available at https://news.microsoft.com/futurecomputed/ [Last accessed 29 September 2019].
  62. 62Shoham, Y, Perrault, R, Brynjolfsson, E, Clark, J, Manyika, J, Niebles, JC, Lyons, T, Etchemendy, J, Grosz, B and Bauer, Z. 2018. The AI Index 2018 Annual Report. Stanford, CA, US: AI Index Steering Committee, Human-Centered AI Initiative, Stanford University. Available at http://cdn.aiindex.org/2018/AI%20Index%202018%20Annual%20Report.pdf [Last accessed 29 September 2019].
  63. 63Singh, P, Lin, T, Mueller, ET, Lim, G, Perkins, T and Li Zhu, W. 2002. Open Mind Common Sense: Knowledge Acquisition from the General Public. In: Meersman, R and Tari Z (eds.), On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE. Lecture Notes in Computer Science, 2519. Berlin, Heidelberg: Springer. DOI: 10.1007/3-540-36124-3_77
  64. 64Sivinski, G, Okuliar, A and Kjolbye, L. 2017. Is big data a big deal? A competition law approach to big data. European Competition Journal, 13(2–3): 199227. DOI: 10.1080/17441056.2017.1362866
  65. 65Sterne, J. 2017. Artificial intelligence for marketing: Practical applications. Hoboken, New Jersey, US: John Wiley & Sons, Inc. DOI: 10.1002/9781119406341
  66. 66Storksdieck, M, Shirk, JL, Cappadonna, JL, Domroese, M, Göbel, C, Haklay, M, Miller-Rushing, AJ, Roetman, P, Sbrocchi, C and Vohland, K. 2016. Associations for citizen science: Regional knowledge, global collaboration. Citizen Science: Theory and Practice, 1(2). DOI: 10.5334/cstp.55
  67. 67Stucke, ME and Grunes, AP. 2016. Introduction: Big Data and Competition Policy. Big Data and Competition Policy. Oxford University Press. Available at https://ssrn.com/abstract=2849074 [Last accessed 29 September 2019].
  68. 68Sullivan, BL, Aycrigg, JL, Barry, JH, Bonney, RE, Bruns, N, Cooper, CB, Damoulas, T, Dhondt, AA, Dietterich, T, Farnsworth, A, Fink, D, Fitzpatrick, JW, Fredericks, T, Gerbracht, J, Gomes, C, Hochachka, WM, Iliff, MJ, Lagoze, C, La Sorte, FA, Merrifield, M, Morris, W, Phillips, TB, Reynolds, M, Rodewald, AD, Rosenberg, KV, Trautmann, NM, Wiggins, A, Winkler, DW, Wong, WK, Wood, CL, Yu, J and Kelling, S. 2014. The eBird Enterprise: An Integrated Approach to Development and Application of Citizen Science. Biological Conservation, 169: 3140. DOI: 10.1016/j.biocon.2013.11.003
  69. 69Sullivan, DP, Winsnes, CF, Åkesson, I, Hjelmare, M, Wiking, M, Schutten, R, Campbell, L, Leifsson, H, Rhodes, S, Nordgren, A, Smith, K, Revaz, B, Finnbogason, B, Szantner, A and Lundberg, E. 2018. Deep Learning Is Combined with Massive-Scale Citizen Science to Improve Large-Scale Image Classification. Nature Biotechnology, 36: 820828. DOI: 10.1038/nbt.4225
  70. 70Sun, Y, Liu, Y, Wang, G and Zhang, H. 2017. Deep learning for plant identification in natural environment. Computational Intelligence and Neuroscience. 2017. DOI: 10.1155/2017/7361042
  71. 71Teece, DJ. 2018. Business models and dynamic capabilities. Long Range Planning, 51(1): 4049. DOI: 10.1016/j.lrp.2017.06.007
  72. 72The Future of Life Institute. 2017. Asilomar AI principles [Principles developed in conjunction with the 2017 Asilomar conference]. Available at https://futureoflife.org/ai-principles/ [Last accessed 28 September 2019].
  73. 73Tollefson, J. 2016. Computers on the reef: Software tools that digitize and annotate underwater images are transforming marine ecology. Nature, 537: 123124. DOI: 10.1038/537123a
  74. 74Universite de Montreal. 2018. Montreal Declaration for a Responsible Development of Artificial Intelligence 2018. Available at https://docs.wixstatic.com/ugd/ebc3a3_c5c1c196fc164756afb92466c081d7ae.pdf [Last accessed 1 October 2019].
  75. 75Van Horn, G, Mac Aodha, O, Song, Y, Cui, Y, Sun, C, Shepard, A, Adam, H, Perona, P and Belongie, S. 2018. The iNaturalist Species Classification and Detection Dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 87698778. DOI: 10.1109/CVPR.2018.00914
  76. 76Wäldchen, J, Rzanny, M, Seeland, M and Mäder, P. 2018. Automated plant species identification—Trends and future directions. PLoS Computational Biology, 14(4): e1005993. DOI: 10.1371/journal.pcbi.1005993
  77. 77Webb, A. 2019. The Big Nine: How the Tech Titans and Their Thinking Machines Could Warp Humanity. Hachette, UK.
  78. 78Wehn, U, Williams, C and Ceccaroni, L. 2019. D6.1: Ethics H – Requirement No. 1. Deliverable report of project H2020 MICS (grant agreement No 824711).
  79. 79Weinstein, BG. 2018. A computer vision for animal ecology. Journal of Animal Ecology, 87(3): 533545. DOI: 10.1111/1365-2656.12780
  80. 80Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A, Bouwman, J, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3. DOI: 10.1038/sdata.2016.18
  81. 81Williams, C, Wehn, U and Ceccaroni, L. 2019. D6.2: Ethics POPD – Requirement No. 2. Deliverable report of project H2020 MICS (grant agreement No 824711).
  82. 82Winfield, AF, Michael, K, Pitt, J and Evers, V. 2019. Machine ethics: the design and governance of ethical AI and autonomous systems. Proceedings of the IEEE, 107(3): 509517. DOI: 10.1109/JPROC.2019.2900622
  83. 83Yampolskiy, R and Fox, J. 2013. Safety engineering for artificial general intelligence. Topoi, 32(2): 217226. DOI: 10.1007/s11245-012-9128-9
  84. 84Yudkowsky, E. 2008. Artificial intelligence as a positive and negative factor in global risk. In: Rees, M, Bostrom, N and Ćirković, M (eds.), Global Catastrophic Risks, 308345. Oxford: Oxford University Press.
DOI: https://doi.org/10.5334/cstp.241 | Journal eISSN: 2057-4991
Language: English
Submitted on: Mar 9, 2019
Accepted on: Oct 30, 2019
Published on: Nov 28, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Luigi Ceccaroni, James Bibby, Erin Roger, Paul Flemons, Katina Michael, Laura Fagan, Jessica L. Oliver, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.