Have a personal or library account? Click to login
Test-Retest Reliability of Two Computationally-Characterised Affective Bias Tasks Cover

Test-Retest Reliability of Two Computationally-Characterised Affective Bias Tasks

Open Access
|Dec 2024

References

  1. 1Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package. Computational Psychiatry, 1, 2457. DOI: 10.1162/CPSY_a_00002
  2. 2Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388407. DOI: 10.3758/s13428-019-01237-x
  3. 3Aylward, J., Hales, C., Robinson, E., & Robinson, O. J. (2020). Translating a rodent measure of negative bias into humans: The impact of induced anxiety and unmedicated mood and anxiety disorders. Psychological Medicine, 50(2), 237246. DOI: 10.1017/S0033291718004117
  4. 4Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 124. DOI: 10.1037/0033-2909.133.1.1
  5. 5Beck, A. T. (1979). Cognitive therapy of depression. Guilford Press.
  6. 6Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 12141221. DOI: 10.1038/nn1954
  7. 7Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the Reliability of Computational Analyses: Model-Based Planning and Its Relationship With Compulsivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(6), 601609. DOI: 10.1016/j.bpsc.2019.12.019
  8. 8Chan, S. W. Y., Goodwin, G. M., & Harmer, C. J. (2007). Highly neurotic never-depressed students have negative biases in information processing. Psychological Medicine, 37(9), 12811291. DOI: 10.1017/S0033291707000669
  9. 9Chung, D., Kadlec, K., Aimone, J. A., McCurry, K., King-Casas, B., & Chiu, P. H. (2017). Valuation in major depression is intact and stable in a non-learning environment. Scientific Reports, 7(1), 44374. DOI: 10.1038/srep44374
  10. 10Daniel-Watanabe, L., McLaughlin, M., Gormley, S., & Robinson, O. J. (2020). Association Between a Directly Translated Cognitive Measure of Negative Bias and Self-reported Psychiatric Symptoms. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, S2451902220300537. DOI: 10.1016/j.bpsc.2020.02.010
  11. 11Ellwart, T., Rinck, M., & Becker, E. S. (2003). Selective memory and memory deficits in depressed inpatients. Depression and Anxiety, 17(4), 197206. DOI: 10.1002/da.10102
  12. 12Everaert, J., Podina, I. R., & Koster, E. H. W. (2017). A comprehensive meta-analysis of interpretation biases in depression. Clinical Psychology Review, 58, 3348. DOI: 10.1016/j.cpr.2017.09.005
  13. 13Fleiss, J. L. (1999). The Design and Analysis of Clinical Experiments. John Wiley & Sons, Inc. DOI: 10.1002/9781118032923
  14. 14Forbes, E. E., Shaw, D. S., & Dahl, R. E. (2007). Alterations in Reward-Related Decision Making in Boys with Recent and Future Depression. Biological Psychiatry, 61(5), 633639. DOI: 10.1016/j.biopsych.2006.05.026
  15. 15Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. NeuroImage, 62(1), 154166. DOI: 10.1016/j.neuroimage.2012.04.024
  16. 16Haines, N., Kvam, P. D., Irving, L. H., Smith, C., Beauchaine, T. P., Pitt, M. A., Ahn, W.-Y., & Turner, B. (2020). Learning from the Reliability Paradox: How Theoretically Informed Generative Models Can Advance the Social, Behavioral, and Brain Sciences. PsyArXiv. DOI: 10.31234/osf.io/xr7y3
  17. 17Harmer, C. J., O’Sullivan, U., Favaron, E., Massey-Chase, R., Ayres, R., Reinecke, A., Goodwin, G. M., & Cowen, P. J. (2009). Effect of Acute Antidepressant Administration on Negative Affective Bias in Depressed Patients. American Journal of Psychiatry, 166(10), 11781184. DOI: 10.1176/appi.ajp.2009.09020149
  18. 18Hedge, C., Bompas, A., & Sumner, P. (2020). Task Reliability Considerations in Computational Psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(9), 837839. DOI: 10.1016/j.bpsc.2020.05.004
  19. 19Herrera, S., Montorio, I., Cabrera, I., & Botella, J. (2017). Memory bias for threatening information related to anxiety: An updated meta-analytic review. Journal of Cognitive Psychology, 29(7), 832854. DOI: 10.1080/20445911.2017.1319374
  20. 20Huys, Q. J. M., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan, R. J., & Dayan, P. (2011). Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS Computational Biology, 7(4), e1002028. DOI: 10.1371/journal.pcbi.1002028
  21. 21Jakubovski, E., Johnson, J. A., Nasir, M., Müller-Vahl, K., & Bloch, M. H. (2019). Systematic review and meta-analysis: Dose-response curve of SSRIs and SNRIs in anxiety disorders. Depression and Anxiety, 36(3), 198212. DOI: 10.1002/da.22854
  22. 22Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613. DOI: 10.1046/j.1525-1497.2001.016009606.x
  23. 23Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B. W., Berry, J. T., & Mokdad, A. H. (2009). The PHQ-8 as a measure of current depression in the general population. Journal of Affective Disorders, 114(1–3), 163173. DOI: 10.1016/j.jad.2008.06.026
  24. 24MacLeod, C., & Mathews, A. (2012). Cognitive Bias Modification Approaches to Anxiety. Annual Review of Clinical Psychology, 8(1), 189217. DOI: 10.1146/annurev-clinpsy-032511-143052
  25. 25MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95(1), 1520. DOI: 10.1037/0021-843X.95.1.15
  26. 26Marchetti, I., Everaert, J., Dainer-Best, J., Loeys, T., Beevers, C. G., & Koster, E. H. W. (2018). Specificity and overlap of attention and memory biases in depression. Journal of Affective Disorders, 225, 404412. DOI: 10.1016/j.jad.2017.08.037
  27. 27McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 3046. DOI: 10.1037/1082-989X.1.1.30
  28. 28Mkrtchian, A., Aylward, J., Dayan, P., Roiser, J. P., & Robinson, O. J. (2017). Modeling Avoidance in Mood and Anxiety Disorders Using Reinforcement Learning. Biological Psychiatry, 82(7), 532539. DOI: 10.1016/j.biopsych.2017.01.017
  29. 29Mkrtchian, A., Valton, V., & Roiser, J. P. (2023). Reliability of Decision-Making and Reinforcement Learning Computational Parameters. Computational Psychiatry, 7(1), 3046. DOI: 10.5334/cpsy.86
  30. 30Moutoussis, M., Bullmore, E. T., Goodyer, I. M., Fonagy, P., Jones, P. B., Dolan, R. J., Dayan, P., & Consortium, on behalf of T. N. in P. N. R. (2018). Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adulthood. PLOS Computational Biology, 14(12), e1006679. DOI: 10.1371/journal.pcbi.1006679
  31. 31Otto, M. W., Tuby, K. S., Gould, R. A., McLean, R. Y. S., & Pollack, M. H. (2001). An Effect-Size Analysis of the Relative Efficacy and Tolerability of Serotonin Selective Reuptake Inhibitors for Panic Disorder. American Journal of Psychiatry, 158(12), 19891992. DOI: 10.1176/appi.ajp.158.12.1989
  32. 32Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 2227. DOI: 10.1016/j.jbef.2017.12.004
  33. 33Peckham, A. D., McHugh, R. K., & Otto, M. W. (2010). A meta-analysis of the magnitude of biased attention in depression. Depression and Anxiety, 27(12), 11351142. DOI: 10.1002/da.20755
  34. 34Pike, A. C., & Robinson, O. J. (2022). Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiatry. DOI: 10.1001/jamapsychiatry.2022.0051
  35. 35Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational Modeling Applied to the Dot-Probe Task Yields Improved Reliability and Mechanistic Insights. Biological Psychiatry, 85(7), 606612. DOI: 10.1016/j.biopsych.2018.09.022
  36. 36Pulcu, E., & Browning, M. (2017). Affective bias as a rational response to the statistics of rewards and punishments. ELife, 6, e27879.
  37. 37Ratcliff, R. (1978). A Theory of Memory Retrieval. Psychological Review, 85(2), 59108.
  38. 38Robinson, O. J., Vytal, K., Cornwell, B. R., & Grillon, C. (2013). The impact of anxiety upon cognition: Perspectives from human threat of shock studies. Frontiers in Human Neuroscience, 7. DOI: 10.3389/fnhum.2013.00203
  39. 39Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive Mechanisms of Treatment in Depression. Neuropsychopharmacology, 37(1), 117136. DOI: 10.1038/npp.2011.183
  40. 40Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., NSPN consortium, & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLOS Computational Biology, 15(2), e1006803. DOI: 10.1371/journal.pcbi.1006803
  41. 41Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420428. DOI: 10.1037/0033-2909.86.2.420
  42. 42Smith, E. M., Reynolds, S., Orchard, F., Whalley, H. C., & Chan, S. W. (2018). Cognitive biases predict symptoms of depression, anxiety and wellbeing above and beyond neuroticism in adolescence. Journal of Affective Disorders, 241, 446453. DOI: 10.1016/j.jad.2018.08.051
  43. 43Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Archives of Internal Medicine, 166(10), 1092. DOI: 10.1001/archinte.166.10.1092
  44. 44Travers, E. (2022, April 24). Stability is not Reliability. http://eointravers.com/post/reliability-stability/
  45. 45van Oostrom, I., Franke, B., Arias Vasquez, A., Rinck, M., Tendolkar, I., Verhagen, M., van der Meij, A., Buitelaar, J. K., & Janzing, J. G. E. (2013). Never-depressed females with a family history of depression demonstrate affective bias. Psychiatry Research, 205(1–2), 5458. DOI: 10.1016/j.psychres.2012.08.004
  46. 46Wagenmakers, E.-J., Van Der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14(1), 322. DOI: 10.3758/BF03194023
  47. 47Weidinger, L., Gradassi, A., Molleman, L., & van den Bos, W. (2019). Test-retest reliability of canonical reinforcement learning models. Proceedings of the 2019 Conference on Cognitive Computational Neuroscience, 14. DOI: 10.32470/CCN.2019.1053-0
  48. 48Zorowitz, S., Karni, G., Paredes, N., Daw, N., & Niv, Y. (2023, July 20). Improving the reliability of the Pavlovian go/no-go task for computational psychiatry research. DOI: 10.31234/osf.io/eb697
DOI: https://doi.org/10.5334/cpsy.92 | Journal eISSN: 2379-6227
Language: English
Submitted on: Jun 6, 2022
Accepted on: Oct 17, 2024
Published on: Dec 18, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Alexandra C. Pike, Katrina H. T. Tan, Hoda Tromblee, Michelle Wing, Oliver J. Robinson, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.