Have a personal or library account? Click to login
Slower Learning Rates from Negative Outcomes in Substance Use Disorder over a 1-Year Period and Their Potential Predictive Utility Cover

Slower Learning Rates from Negative Outcomes in Substance Use Disorder over a 1-Year Period and Their Potential Predictive Utility

Open Access
|Jun 2022

References

  1. 1Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L., & Platt, M. L. (2017). A Primer on Foraging and the Explore/Exploit Trade-Off for Psychiatry Research. Neuropsychopharmacology, 42(10), 19311939. DOI: 10.1038/npp.2017.108
  2. 2Ahn, W. Y., Vasilev, G., Lee, S. H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Front Psychol, 5, 849. DOI: 10.3389/fpsyg.2014.00849
  3. 3Bohn, M., Babor, T., & Kranzler, H. (1991). Validity of the Drug Abuse Screening Test (DAST-10) in inpatient substance abusers. Problems of drug dependence, 119, 233235.
  4. 4Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the Reliability of Computational Analyses: Model-Based Planning and Its Relationship With Compulsivity. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(6), 601609. DOI: 10.1016/j.bpsc.2019.12.019
  5. 5Chung, D., Kadlec, K., Aimone, J. A., McCurry, K., King-Casas, B., & Chiu, P. H. (2017). Valuation in major depression is intact and stable in a non-learning environment. Sci Rep, 7, 44374. DOI: 10.1038/srep44374
  6. 6Da Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., & Friston, K. (2020). Active inference on discrete state-spaces: A synthesis. J Math Psychol, 99, 102447. DOI: 10.1016/j.jmp.2020.102447
  7. 7Dienes, Z. (2008). Understanding psychology as a science: An introduction to scientific and statistical inference. Palgrave Macmillan.
  8. 8Dienes, Z. (2011). Bayesian Versus Orthodox Statistics: Which Side Are You On? Perspect Psychol Sci, 6(3), 274290. DOI: 10.1177/1745691611406920
  9. 9Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Front Psychol, 5, 781. DOI: 10.3389/fpsyg.2014.00781
  10. 10Donamayor, N., Strelchuk, D., Baek, K., Banca, P., & Voon, V. (2018). The involuntary nature of binge drinking: goal directedness and awareness of intention. Addict Biol, 23(1), 515526. DOI: 10.1111/adb.12505
  11. 11Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Large-scale analysis of test-retest reliabilities of self-regulation measures. Proc Natl Acad Sci U S A, 116(12), 54725477. DOI: 10.1073/pnas.1818430116
  12. 12Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci, 8(11), 14811489. DOI: 10.1038/nn1579
  13. 13Everitt, B. J., & Robbins, T. W. (2016). Drug Addiction: Updating Actions to Habits to Compulsions Ten Years On. Annu Rev Psychol, 67, 2350. DOI: 10.1146/annurev-psych-122414-033457
  14. 14Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free energy and the Laplace approximation. Neuroimage, 34(1), 220234. DOI: 10.1016/j.neuroimage.2006.08.035
  15. 15Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A., & Ondobaka, S. (2017). Active Inference, Curiosity and Insight. Neural Comput, 29(10), 26332683. DOI: 10.1162/neco_a_00999
  16. 16Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., van Wijk, B. C. M., … Zeidman, P. (2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, 413431. DOI: 10.1016/j.neuroimage.2015.11.015
  17. 17Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation and active inference. Netw Neurosci, 1(4), 381414. DOI: 10.1162/NETN_a_00018
  18. 18Gelman, A., Hill, J., & Yajima, M. (2012). Why We (Usually) Don’t Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness, 5(2), 189211. DOI: 10.1080/19345747.2011.618213
  19. 19Gelman, A., & Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. Computational Statistics, 15(3), 373390. DOI: 10.1007/s001800000040
  20. 20Grubbs, F. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 121. DOI: 10.1080/00401706.1969.10490657
  21. 21Hedge, C., Bompas, A., & Sumner, P. (2020). Task Reliability Considerations in Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(9), 837839. DOI: 10.1016/j.bpsc.2020.05.004
  22. 22Hester, R., Bell, R. P., Foxe, J. J., & Garavan, H. (2013). The influence of monetary punishment on cognitive control in abstinent cocaine-users. Drug Alcohol Depend, 133(1), 8693. DOI: 10.1016/j.drugalcdep.2013.05.027
  23. 23Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci, 19(3), 404413. DOI: 10.1038/nn.4238
  24. 24Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry, 167(7), 748751. DOI: 10.1176/appi.ajp.2010.09091379
  25. 25Johnstone, B., Callahan, C. D., Kapila, C. J., & Bouman, D. E. (1996). The comparability of the WRAT-R reading test and NAART as estimates of premorbid intelligence in neurologically impaired patients. Arch Clin Neuropsychol, 11(6), 513519. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14588456. DOI: 10.1093/arclin/11.6.513
  26. 26Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med, 16(9), 606613. DOI: 10.1046/j.1525-1497.2001.016009606.x
  27. 27Ly, A., Verhagen, A. J., & Wagenmakers, E.-J. (2016). Harold Jeffreys’s Default Bayes Factor Hypothesis Tests: Explanation, Extension, and Application in Psychology. Journal of Mathematical Psychology, 72, 1932. DOI: 10.1016/j.jmp.2015.06.004
  28. 28Morey, R. D., & Rouder, J. N. (2015). BayesFactor (Version 0.9.10-2)[Computer software].
  29. 29Moutoussis, M., Bullmore, E. T., Goodyer, I. M., Fonagy, P., Jones, P. B., Dolan, R. J., … Neuroscience in Psychiatry Network Research, C. (2018). Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adulthood. PLoS Comput Biol, 14(12), e1006679. DOI: 10.1371/journal.pcbi.1006679
  30. 30Myers, C. E., Rego, J., Haber, P., Morley, K., Beck, K. D., Hogarth, L., & Moustafa, A. A. (2017). Learning and generalization from reward and punishment in opioid addiction. Behav Brain Res, 317, 122131. DOI: 10.1016/j.bbr.2016.09.033
  31. 31Nair, A., Rutledge, R. B., & Mason, L. (2020). Under the Hood: Using Computational Psychiatry to Make Psychological Therapies More Mechanism-Focused. Front Psychiatry, 11, 140. DOI: 10.3389/fpsyt.2020.00140
  32. 32NIMH. (2007). National Comorbidity Survey: Lifetime prevalence estimates. Retrieved from http://www.hcp.med.harvard.edu/ncs/
  33. 33Norman, S. B., Hami Cissell, S., Means-Christensen, A. J., & Stein, M. B. (2006). Development and validation of an overall anxiety severity and impairment scale (OASIS). Depression and Anxiety, 23(4), 245249. DOI: 10.1002/da.20182
  34. 34Obst, E., Schad, D. J., Huys, Q. J., Sebold, M., Nebe, S., Sommer, C., … Zimmermann, U. S. (2018). Drunk decisions: Alcohol shifts choice from habitual towards goal-directed control in adolescent intermediate-risk drinkers. J Psychopharmacol, 32(8), 855866. DOI: 10.1177/0269881118772454
  35. 35Passetti, F., Clark, L., Mehta, M. A., Joyce, E., & King, M. (2008). Neuropsychological predictors of clinical outcome in opiate addiction. Drug Alcohol Depend, 94(1–3), 8291. DOI: 10.1016/j.drugalcdep.2007.10.008
  36. 36Petry, N. M., Bickel, W. K., & Arnett, M. (1998). Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction, 93(5), 729738. DOI: 10.1046/j.1360-0443.1998.9357298.x
  37. 37Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational Modeling Applied to the Dot-Probe Task Yields Improved Reliability and Mechanistic Insights. Biol Psychiatry, 85(7), 606612. DOI: 10.1016/j.biopsych.2018.09.022
  38. 38Reiter, A. M., Deserno, L., Kallert, T., Heinze, H. J., Heinz, A., & Schlagenhauf, F. (2016). Behavioral and Neural Signatures of Reduced Updating of Alternative Options in Alcohol-Dependent Patients during Flexible Decision-Making. J Neurosci, 36(43), 1093510948. DOI: 10.1523/JNEUROSCI.4322-15.2016
  39. 39Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian model selection for group studies – revisited. Neuroimage, 84, 971985. DOI: 10.1016/j.neuroimage.2013.08.065
  40. 40Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes Factors for ANOVA Designs. Journal of Mathematical Psychology, 56, 356374. DOI: 10.1016/j.jmp.2012.08.001
  41. 41Schwartenbeck, P., FitzGerald, T. H., Mathys, C., Dolan, R., Wurst, F., Kronbichler, M., & Friston, K. (2015). Optimal inference with suboptimal models: addiction and active Bayesian inference. Med Hypotheses, 84(2), 109117. DOI: 10.1016/j.mehy.2014.12.007
  42. 42Schwartenbeck, P., & Friston, K. (2016). Computational Phenotyping in Psychiatry: A Worked Example. eneuro, 3(4), ENEURO.0049-0016.2016. DOI: 10.1523/ENEURO.0049-16.2016
  43. 43Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H., Kronbichler, M., & Friston, K. J. (2019). Computational mechanisms of curiosity and goal-directed exploration. Elife, 8. DOI: 10.7554/eLife.41703
  44. 44Sebold, M., Deserno, L., Nebe, S., Schad, D. J., Garbusow, M., Hagele, C., … Huys, Q. J. (2014). Model-based and model-free decisions in alcohol dependence. Neuropsychobiology, 70(2), 122131. DOI: 10.1159/000362840
  45. 45Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., consortium, N., & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLoS Comput Biol, 15(2), e1006803. DOI: 10.1371/journal.pcbi.1006803
  46. 46Sheehan, D., Janavs, J., Baker, R., Sheehan, K. H., Knapp, E., & Sheehan, M. (2015). The MINI international neuropsychiatric interview–version 7.0. Jacksonville, FL: Medical Outcomes System Inc.
  47. 47Sheehan, D. V., & Lecrubier, Y. (2010). The MINI international neuropsychiatric interview version 6.0 (MINI 6.0). Jacksonville, FL: Medical Outcomes System Inc.
  48. 48Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59 Suppl 20, 2233;quiz 34–57. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9881538
  49. 49Simons, J. S., & Arens, A. M. (2007). Moderating effects of sensitivity to punishment and sensitivity to reward on associations between marijuana effect expectancies and use. Psychol Addict Behav, 21(3), 409414. DOI: 10.1037/0893-164X.21.3.409
  50. 50Simons, J. S., Dvorak, R. D., & Batien, B. D. (2008). Methamphetamine use in a rural college population: associations with marijuana use, sensitivity to punishment, and sensitivity to reward. Psychol Addict Behav, 22(3), 444449. DOI: 10.1037/0893-164X.22.3.444
  51. 51Sjoerds, Z., de Wit, S., van den Brink, W., Robbins, T. W., Beekman, A. T., Penninx, B. W., & Veltman, D. J. (2013). Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry, 3, e337. DOI: 10.1038/tp.2013.107
  52. 52Smith, R., Friston, K., & Whyte, C. (2022). A step-by-step tutorial on active inference and its application to empirical data. Journal of Mathematical Psychology, 107, 102632. DOI: 10.1016/j.jmp.2021.102632
  53. 53Smith, R., Kirlic, N., Stewart, J. L., Touthang, J., Kuplicki, R., Khalsa, S. S., … Aupperle, R. L. (2021). Greater decision uncertainty characterizes a transdiagnostic patient sample during approach-avoidance conflict: a computational modelling approach. Journal of Psychiatry & Neuroscience, 46(1), E74E87. DOI: 10.1503/jpn.200032
  54. 54Smith, R., Kirlic, N., Stewart, J. L., Touthang, J., Kuplicki, R., McDermott, T. J., … Aupperle, R. L. (2021). Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample. Scientific Reports, 11(1), 11783. DOI: 10.1038/s41598-021-91308-x
  55. 55Smith, R., Kuplicki, R., Feinstein, J., Forthman, K. L., Stewart, J. L., Paulus, M. P., … Khalsa, S. S. (2020). A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLoS Computational Biology, 16(12), e1008484. DOI: 10.1371/journal.pcbi.1008484
  56. 56Smith, R., Schwartenbeck, P., Stewart, J. L., Kuplicki, R., Ekhtiari, H., Investigators, T., & Paulus, M. P. (2020). Imprecise Action Selection in Substance Use Disorder: Evidence for Active Learning Impairments When Solving the Explore-exploit Dilemma. Drug and Alcohol Dependence, 215, 108208. DOI: 10.1016/j.drugalcdep.2020.108208
  57. 57Smith, R., Taylor, S., & Bilek, E. (2021). Computational mechanisms of addiction: recent evidence and its relevance to addiction medicine. Current Addiction Reports, 8, 509519. DOI: 10.1007/s40429-021-00399-z
  58. 58Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. Neuroimage, 46(4), 10041017. DOI: 10.1016/j.neuroimage.2009.03.025
  59. 59Stewart, J. L., May, A. C., Poppa, T., Davenport, P. W., Tapert, S. F., & Paulus, M. P. (2014). You are the danger: attenuated insula response in methamphetamine users during aversive interoceptive decision-making. Drug Alcohol Depend, 142, 110119. DOI: 10.1016/j.drugalcdep.2014.06.003
  60. 60Suzuki, S., & Kober, H. (2018). Substance-related and addictive disorders. In J. Butcher, J. Hooley, & P. Kendall (Eds.), APA handbook of psychopathology: Psychopathology: Understanding, assessing, and treating adult mental disorders, 1, 481506. Washington, DC: American Psychological Association. DOI: 10.1037/0000064-020
  61. 61Valyan, A., Ekhtiari, H., Smith, R., & Paulus, M. P. (2020). Decision-making deficits in substance use disorders. In A. Verdejo-Garcia (Ed.), Cognition and Addiction (pp. 2561). Academic Press. DOI: 10.1016/B978-0-12-815298-0.00004-6
  62. 62Verdejo-Garcia, A., Chong, T. T., Stout, J. C., Yucel, M., & London, E. D. (2018). Stages of dysfunctional decision-making in addiction. Pharmacol Biochem Behav, 164, 99105. DOI: 10.1016/j.pbb.2017.02.003
  63. 63Verdejo-Garcia, A., Garcia-Fernandez, G., & Dom, G. (2019). Cognition and addiction. Dialogues Clin Neurosci, 21(3), 281290. DOI: 10.31887/DCNS.2019.21.3/gdom
  64. 64Victor, T. A., Khalsa, S. S., Simmons, W. K., Feinstein, J. S., Savitz, J., Aupperle, R. L., … Paulus, M. P. (2018). Tulsa 1000: a naturalistic study protocol for multilevel assessment and outcome prediction in a large psychiatric sample. BMJ open, 8(1), e016620. DOI: 10.1136/bmjopen-2017-016620
  65. 65Voon, V., Derbyshire, K., Ruck, C., Irvine, M. A., Worbe, Y., Enander, J., … Bullmore, E. T. (2015). Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry, 20(3), 345352. DOI: 10.1038/mp.2014.44
  66. 66Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H., Price, C. J., & Friston, K. J. (2019). A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. Neuroimage, 200, 1225. DOI: 10.1016/j.neuroimage.2019.06.032
  67. 67Zhang, S., & Yu, A. J. (2013). Forgetful Bayes and myopic planning: Human learning and decision-making in a bandit setting. Advances in neural information processing systems, 26072615.
DOI: https://doi.org/10.5334/cpsy.85 | Journal eISSN: 2379-6227
Language: English
Submitted on: Oct 27, 2021
Accepted on: Apr 27, 2022
Published on: Jun 8, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Ryan Smith, Samuel Taylor, Jennifer L. Stewart, Salvador M. Guinjoan, Maria Ironside, Namik Kirlic, Hamed Ekhtiari, Evan J. White, Haixia Zheng, Rayus Kuplicki, Tulsa 1000 Investigators, Martin P. Paulus, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.