References
- 1Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L., & Platt, M. L. (2017). A Primer on Foraging and the Explore/Exploit Trade-Off for Psychiatry Research. Neuropsychopharmacology, 42(10), 1931–1939. DOI: 10.1038/npp.2017.108
- 2Ahn, W. Y., Vasilev, G., Lee, S. H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Front Psychol, 5, 849. DOI: 10.3389/fpsyg.2014.00849
- 3Bohn, M., Babor, T., & Kranzler, H. (1991). Validity of the Drug Abuse Screening Test (DAST-10) in inpatient substance abusers. Problems of drug dependence, 119, 233–235.
- 4Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the Reliability of Computational Analyses: Model-Based Planning and Its Relationship With Compulsivity. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(6), 601–609. DOI: 10.1016/j.bpsc.2019.12.019
- 5Chung, D., Kadlec, K., Aimone, J. A., McCurry, K., King-Casas, B., & Chiu, P. H. (2017). Valuation in major depression is intact and stable in a non-learning environment. Sci Rep, 7, 44374. DOI: 10.1038/srep44374
- 6Da Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., & Friston, K. (2020). Active inference on discrete state-spaces: A synthesis. J Math Psychol, 99, 102447. DOI: 10.1016/j.jmp.2020.102447
- 7Dienes, Z. (2008). Understanding psychology as a science: An introduction to scientific and statistical inference. Palgrave Macmillan.
- 8Dienes, Z. (2011). Bayesian Versus Orthodox Statistics: Which Side Are You On? Perspect Psychol Sci, 6(3), 274–290. DOI: 10.1177/1745691611406920
- 9Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Front Psychol, 5, 781. DOI: 10.3389/fpsyg.2014.00781
- 10Donamayor, N., Strelchuk, D., Baek, K., Banca, P., & Voon, V. (2018). The involuntary nature of binge drinking: goal directedness and awareness of intention. Addict Biol, 23(1), 515–526. DOI: 10.1111/adb.12505
- 11Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Large-scale analysis of test-retest reliabilities of self-regulation measures. Proc Natl Acad Sci U S A, 116(12), 5472–5477. DOI: 10.1073/pnas.1818430116
- 12Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci, 8(11), 1481–1489. DOI: 10.1038/nn1579
- 13Everitt, B. J., & Robbins, T. W. (2016). Drug Addiction: Updating Actions to Habits to Compulsions Ten Years On. Annu Rev Psychol, 67, 23–50. DOI: 10.1146/annurev-psych-122414-033457
- 14Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free energy and the Laplace approximation. Neuroimage, 34(1), 220–234. DOI: 10.1016/j.neuroimage.2006.08.035
- 15Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A., & Ondobaka, S. (2017). Active Inference, Curiosity and Insight. Neural Comput, 29(10), 2633–2683. DOI: 10.1162/neco_a_00999
- 16Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., van Wijk, B. C. M., … Zeidman, P. (2016). Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, 413–431. DOI: 10.1016/j.neuroimage.2015.11.015
- 17Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation and active inference. Netw Neurosci, 1(4), 381–414. DOI: 10.1162/NETN_a_00018
- 18Gelman, A., Hill, J., & Yajima, M. (2012). Why We (Usually) Don’t Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness, 5(2), 189–211. DOI: 10.1080/19345747.2011.618213
- 19Gelman, A., & Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. Computational Statistics, 15(3), 373–390. DOI: 10.1007/s001800000040
- 20Grubbs, F. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1–21. DOI: 10.1080/00401706.1969.10490657
- 21Hedge, C., Bompas, A., & Sumner, P. (2020). Task Reliability Considerations in Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(9), 837–839. DOI: 10.1016/j.bpsc.2020.05.004
- 22Hester, R., Bell, R. P., Foxe, J. J., & Garavan, H. (2013). The influence of monetary punishment on cognitive control in abstinent cocaine-users. Drug Alcohol Depend, 133(1), 86–93. DOI: 10.1016/j.drugalcdep.2013.05.027
- 23Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci, 19(3), 404–413. DOI: 10.1038/nn.4238
- 24Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry, 167(7), 748–751. DOI: 10.1176/appi.ajp.2010.09091379
- 25Johnstone, B., Callahan, C. D., Kapila, C. J., & Bouman, D. E. (1996). The comparability of the WRAT-R reading test and NAART as estimates of premorbid intelligence in neurologically impaired patients. Arch Clin Neuropsychol, 11(6), 513–519. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/14588456 . DOI: 10.1093/arclin/11.6.513 - 26Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med, 16(9), 606–613. DOI: 10.1046/j.1525-1497.2001.016009606.x
- 27Ly, A., Verhagen, A. J., & Wagenmakers, E.-J. (2016). Harold Jeffreys’s Default Bayes Factor Hypothesis Tests: Explanation, Extension, and Application in Psychology. Journal of Mathematical Psychology, 72, 19–32. DOI: 10.1016/j.jmp.2015.06.004
- 28Morey, R. D., & Rouder, J. N. (2015). BayesFactor (Version 0.9.10-2)[Computer software].
- 29Moutoussis, M., Bullmore, E. T., Goodyer, I. M., Fonagy, P., Jones, P. B., Dolan, R. J., … Neuroscience in Psychiatry Network Research, C. (2018). Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adulthood. PLoS Comput Biol, 14(12),
e1006679 . DOI: 10.1371/journal.pcbi.1006679 - 30Myers, C. E., Rego, J., Haber, P., Morley, K., Beck, K. D., Hogarth, L., & Moustafa, A. A. (2017). Learning and generalization from reward and punishment in opioid addiction. Behav Brain Res, 317, 122–131. DOI: 10.1016/j.bbr.2016.09.033
- 31Nair, A., Rutledge, R. B., & Mason, L. (2020). Under the Hood: Using Computational Psychiatry to Make Psychological Therapies More Mechanism-Focused. Front Psychiatry, 11, 140. DOI: 10.3389/fpsyt.2020.00140
- 32NIMH. (2007). National Comorbidity Survey: Lifetime prevalence estimates. Retrieved from
http://www.hcp.med.harvard.edu/ncs/ - 33Norman, S. B., Hami Cissell, S., Means-Christensen, A. J., & Stein, M. B. (2006). Development and validation of an overall anxiety severity and impairment scale (OASIS). Depression and Anxiety, 23(4), 245–249. DOI: 10.1002/da.20182
- 34Obst, E., Schad, D. J., Huys, Q. J., Sebold, M., Nebe, S., Sommer, C., … Zimmermann, U. S. (2018). Drunk decisions: Alcohol shifts choice from habitual towards goal-directed control in adolescent intermediate-risk drinkers. J Psychopharmacol, 32(8), 855–866. DOI: 10.1177/0269881118772454
- 35Passetti, F., Clark, L., Mehta, M. A., Joyce, E., & King, M. (2008). Neuropsychological predictors of clinical outcome in opiate addiction. Drug Alcohol Depend, 94(1–3), 82–91. DOI: 10.1016/j.drugalcdep.2007.10.008
- 36Petry, N. M., Bickel, W. K., & Arnett, M. (1998). Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction, 93(5), 729–738. DOI: 10.1046/j.1360-0443.1998.9357298.x
- 37Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational Modeling Applied to the Dot-Probe Task Yields Improved Reliability and Mechanistic Insights. Biol Psychiatry, 85(7), 606–612. DOI: 10.1016/j.biopsych.2018.09.022
- 38Reiter, A. M., Deserno, L., Kallert, T., Heinze, H. J., Heinz, A., & Schlagenhauf, F. (2016). Behavioral and Neural Signatures of Reduced Updating of Alternative Options in Alcohol-Dependent Patients during Flexible Decision-Making. J Neurosci, 36(43), 10935–10948. DOI: 10.1523/JNEUROSCI.4322-15.2016
- 39Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian model selection for group studies – revisited. Neuroimage, 84, 971–985. DOI: 10.1016/j.neuroimage.2013.08.065
- 40Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes Factors for ANOVA Designs. Journal of Mathematical Psychology, 56, 356–374. DOI: 10.1016/j.jmp.2012.08.001
- 41Schwartenbeck, P., FitzGerald, T. H., Mathys, C., Dolan, R., Wurst, F., Kronbichler, M., & Friston, K. (2015). Optimal inference with suboptimal models: addiction and active Bayesian inference. Med Hypotheses, 84(2), 109–117. DOI: 10.1016/j.mehy.2014.12.007
- 42Schwartenbeck, P., & Friston, K. (2016). Computational Phenotyping in Psychiatry: A Worked Example. eneuro, 3(4), ENEURO.0049-0016.2016. DOI: 10.1523/ENEURO.0049-16.2016
- 43Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H., Kronbichler, M., & Friston, K. J. (2019). Computational mechanisms of curiosity and goal-directed exploration. Elife, 8. DOI: 10.7554/eLife.41703
- 44Sebold, M., Deserno, L., Nebe, S., Schad, D. J., Garbusow, M., Hagele, C., … Huys, Q. J. (2014). Model-based and model-free decisions in alcohol dependence. Neuropsychobiology, 70(2), 122–131. DOI: 10.1159/000362840
- 45Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., consortium, N., & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLoS Comput Biol, 15(2),
e1006803 . DOI: 10.1371/journal.pcbi.1006803 - 46Sheehan, D., Janavs, J., Baker, R., Sheehan, K. H., Knapp, E., & Sheehan, M. (2015). The MINI international neuropsychiatric interview–version 7.0. Jacksonville, FL: Medical Outcomes System Inc.
- 47Sheehan, D. V., & Lecrubier, Y. (2010). The MINI international neuropsychiatric interview version 6.0 (MINI 6.0). Jacksonville, FL: Medical Outcomes System Inc.
- 48Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59 Suppl 20, 22–33;quiz 34–57. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/9881538 - 49Simons, J. S., & Arens, A. M. (2007). Moderating effects of sensitivity to punishment and sensitivity to reward on associations between marijuana effect expectancies and use. Psychol Addict Behav, 21(3), 409–414. DOI: 10.1037/0893-164X.21.3.409
- 50Simons, J. S., Dvorak, R. D., & Batien, B. D. (2008). Methamphetamine use in a rural college population: associations with marijuana use, sensitivity to punishment, and sensitivity to reward. Psychol Addict Behav, 22(3), 444–449. DOI: 10.1037/0893-164X.22.3.444
- 51Sjoerds, Z., de Wit, S., van den Brink, W., Robbins, T. W., Beekman, A. T., Penninx, B. W., & Veltman, D. J. (2013). Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry, 3,
e337 . DOI: 10.1038/tp.2013.107 - 52Smith, R., Friston, K., & Whyte, C. (2022). A step-by-step tutorial on active inference and its application to empirical data. Journal of Mathematical Psychology, 107, 102632. DOI: 10.1016/j.jmp.2021.102632
- 53Smith, R., Kirlic, N., Stewart, J. L., Touthang, J., Kuplicki, R., Khalsa, S. S., … Aupperle, R. L. (2021). Greater decision uncertainty characterizes a transdiagnostic patient sample during approach-avoidance conflict: a computational modelling approach. Journal of Psychiatry & Neuroscience, 46(1), E74–E87. DOI: 10.1503/jpn.200032
- 54Smith, R., Kirlic, N., Stewart, J. L., Touthang, J., Kuplicki, R., McDermott, T. J., … Aupperle, R. L. (2021). Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample. Scientific Reports, 11(1), 11783. DOI: 10.1038/s41598-021-91308-x
- 55Smith, R., Kuplicki, R., Feinstein, J., Forthman, K. L., Stewart, J. L., Paulus, M. P., … Khalsa, S. S. (2020). A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLoS Computational Biology, 16(12),
e1008484 . DOI: 10.1371/journal.pcbi.1008484 - 56Smith, R., Schwartenbeck, P., Stewart, J. L., Kuplicki, R., Ekhtiari, H., Investigators, T., & Paulus, M. P. (2020). Imprecise Action Selection in Substance Use Disorder: Evidence for Active Learning Impairments When Solving the Explore-exploit Dilemma. Drug and Alcohol Dependence, 215, 108208. DOI: 10.1016/j.drugalcdep.2020.108208
- 57Smith, R., Taylor, S., & Bilek, E. (2021). Computational mechanisms of addiction: recent evidence and its relevance to addiction medicine. Current Addiction Reports, 8, 509–519. DOI: 10.1007/s40429-021-00399-z
- 58Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. Neuroimage, 46(4), 1004–1017. DOI: 10.1016/j.neuroimage.2009.03.025
- 59Stewart, J. L., May, A. C., Poppa, T., Davenport, P. W., Tapert, S. F., & Paulus, M. P. (2014). You are the danger: attenuated insula response in methamphetamine users during aversive interoceptive decision-making. Drug Alcohol Depend, 142, 110–119. DOI: 10.1016/j.drugalcdep.2014.06.003
- 60Suzuki, S., & Kober, H. (2018).
Substance-related and addictive disorders . In J. Butcher, J. Hooley, & P. Kendall (Eds.), APA handbook of psychopathology: Psychopathology: Understanding, assessing, and treating adult mental disorders, 1, 481–506. Washington, DC: American Psychological Association. DOI: 10.1037/0000064-020 - 61Valyan, A., Ekhtiari, H., Smith, R., & Paulus, M. P. (2020).
Decision-making deficits in substance use disorders . In A. Verdejo-Garcia (Ed.), Cognition and Addiction (pp. 25–61). Academic Press. DOI: 10.1016/B978-0-12-815298-0.00004-6 - 62Verdejo-Garcia, A., Chong, T. T., Stout, J. C., Yucel, M., & London, E. D. (2018). Stages of dysfunctional decision-making in addiction. Pharmacol Biochem Behav, 164, 99–105. DOI: 10.1016/j.pbb.2017.02.003
- 63Verdejo-Garcia, A., Garcia-Fernandez, G., & Dom, G. (2019). Cognition and addiction. Dialogues Clin Neurosci, 21(3), 281–290. DOI: 10.31887/DCNS.2019.21.3/gdom
- 64Victor, T. A., Khalsa, S. S., Simmons, W. K., Feinstein, J. S., Savitz, J., Aupperle, R. L., … Paulus, M. P. (2018). Tulsa 1000: a naturalistic study protocol for multilevel assessment and outcome prediction in a large psychiatric sample. BMJ open, 8(1),
e016620 . DOI: 10.1136/bmjopen-2017-016620 - 65Voon, V., Derbyshire, K., Ruck, C., Irvine, M. A., Worbe, Y., Enander, J., … Bullmore, E. T. (2015). Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry, 20(3), 345–352. DOI: 10.1038/mp.2014.44
- 66Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H., Price, C. J., & Friston, K. J. (2019). A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. Neuroimage, 200, 12–25. DOI: 10.1016/j.neuroimage.2019.06.032
- 67Zhang, S., & Yu, A. J. (2013). Forgetful Bayes and myopic planning: Human learning and decision-making in a bandit setting. Advances in neural information processing systems, 2607–2615.
