References
- 1Aberman, J. E., & Salamone, J. D. (1999). Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience, 92(2), 545–552. DOI: 10.1016/s0306-4522(99)00004-4
- 2Admon, R., Kaiser, R. H., Dillon, D. G., Beltzer, M., Goer, F., Olson, D. P., Vitaliano, G., & Pizzagalli, D. A. (2017). Dopaminergic Enhancement of Striatal Response to Reward in Major Depression. The American Journal of Psychiatry, 174(4), 378–386. DOI: 10.1176/appi.ajp.2016.16010111
- 3Amlung, M., Marsden, E., Holshausen, K., Morris, V., Patel, H., Vedelago, L., Naish, K. R., Reed, D. D., & McCabe, R. E. (2019). Delay Discounting as a Transdiagnostic Process in Psychiatric Disorders: A Meta-analysis. JAMA Psychiatry, 76(11), 1176–1186. DOI: 10.1001/jamapsychiatry.2019.2102
- 4Andrews, P. W., Bharwani, A., Lee, K. R., Fox, M., & Thomson, J. A. (2015). Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neuroscience and Biobehavioral Reviews, 51, 164–188. DOI: 10.1016/j.neubiorev.2015.01.018
- 5Artigas, F., Romero, L., de Montigny, C., & Blier, P. (1996). Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends in Neurosciences, 19(9), 378–383. DOI: 10.1016/S0166-2236(96)10037-0
- 6Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46(9), 1309–1320. DOI: 10.1016/s0006-3223(99)00140-7
- 7Balleine, B. W., & O’Doherty, J. P. (2010). Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action. Neuropsychopharmacology, 35(1), 48–69. DOI: 10.1038/npp.2009.131
- 8Bayer, H. M., & Glimcher, P. W. (2005). Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal. Neuron, 47(1), 129–141. DOI: 10.1016/j.neuron.2005.05.020
- 9Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E., Dolan, R., & Dayan, P. (2013). Dopamine Modulates Reward-Related Vigor. Neuropsychopharmacology, 38(8), 1495–1503. DOI: 10.1038/npp.2013.48
- 10Berwian, I. M., Wenzel, J. G., Collins, A. G. E., Seifritz, E., Stephan, K. E., Walter, H., & Huys, Q. J. M. (2020). Computational Mechanisms of Effort and Reward Decisions in Patients With Depression and Their Association With Relapse After Antidepressant Discontinuation. JAMA Psychiatry, 77(5), 1–10. DOI: 10.1001/jamapsychiatry.2019.4971
- 11Bolger, N., Zee, K., Rossignac-Milon, M., & Hassin, R. (2019). Causal processes in psychology are heterogeneous. Journal of Experimental Psychology: General, 148, 601–618. DOI: 10.1037/xge0000558
- 12Bromberg-Martin, E. S., Hikosaka, O., & Nakamura, K. (2010). Coding of Task Reward Value in the Dorsal Raphe Nucleus. Journal of Neuroscience, 30(18), 6262–6272. DOI: 10.1523/JNEUROSCI.0015-10.2010
- 13Brown, V. M., Zhu, L., Solway, A., Wang, J. M., McCurry, K. L., King-Casas, B., & Chiu, P. H. (2021). Reinforcement Learning Disruptions in Individuals With Depression and Sensitivity to Symptom Change Following Cognitive Behavioral Therapy. JAMA Psychiatry, 78(10), 1113–1122. DOI: 10.1001/jamapsychiatry.2021.1844
- 14Carr, G. D., & White, N. M. (1987). Effects of systemic and intracranial amphetamine injections on behavior in the open field: A detailed analysis. Pharmacology, Biochemistry, and Behavior, 27(1), 113–122. DOI: 10.1016/0091-3057(87)90485-0
- 15Castrén, E. (2005). Is mood chemistry? Nature Reviews. Neuroscience, 6(3), 241–246. DOI: 10.1038/nrn1629
- 16Chang, C. Y., Gardner, M., Di Tillio, M. G., & Schoenbaum, G. (2017). Optogenetic Blockade of Dopamine Transients Prevents Learning Induced by Changes in Reward Features. Current Biology: CB, 27(22), 3480–3486.
e3 . DOI: 10.1016/j.cub.2017.09.049 - 17Cipriani, A., Furukawa, T. A., Salanti, G., Chaimani, A., Atkinson, L. Z., Ogawa, Y., Leucht, S., Ruhe, H. G., Turner, E. H., Higgins, J. P. T., Egger, M., Takeshima, N., Hayasaka, Y., Imai, H., Shinohara, K., Tajika, A., Ioannidis, J. P. A., & Geddes, J. R. (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. The Lancet, 391(10128), 1357–1366. DOI: 10.1016/S0140-6736(17)32802-7
- 18Cools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions. Neuropsychopharmacology, 36(1), 98–113. DOI: 10.1038/npp.2010.121
- 19Cools, R., Robinson, O. J., & Sahakian, B. (2008). Acute Tryptophan Depletion in Healthy Volunteers Enhances Punishment Prediction but Does not Affect Reward Prediction. Neuropsychopharmacology, 33(9), 2291–2299. DOI: 10.1038/sj.npp.1301598
- 20Cowen, P. J., & Browning, M. (2015). What has serotonin to do with depression? World Psychiatry, 14(2), 158–160. DOI: 10.1002/wps.20229
- 21Crockett, M. J., Clark, L., & Robbins, T. W. (2009). Reconciling the Role of Serotonin in Behavioral Inhibition and Aversion: Acute Tryptophan Depletion Abolishes Punishment-Induced Inhibition in Humans. The Journal of Neuroscience, 29(38), 11993–11999. DOI: 10.1523/JNEUROSCI.2513-09.2009
- 22Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69(6), 1204–1215. DOI: 10.1016/j.neuron.2011.02.027
- 23Daw, N. D., Kakade, S., & Dayan, P. (2002). Opponent interactions between serotonin and dopamine. Neural Networks, 15(4), 603–616. DOI: 10.1016/S0893-6080(02)00052-7
- 24de Jong, J. W., Afjei, S. A., Dorocic, I. P., Peck, J. R., Liu, C., Kim, C. K., Tian, L., Deisseroth, K., & Lammel, S. (2019). A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron, 101(1), 133–151.
e7 . DOI: 10.1016/j.neuron.2018.11.005 - 25Deakin, J. F. W., & Graeff, F. G. (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology, 5(4), 305–315. DOI: 10.1177/026988119100500414
- 26Delgado, P. L. (2000). Depression: The case for a monoamine deficiency. The Journal of Clinical Psychiatry, 61 Suppl 6, 7–11.
- 27Dell’Osso, B., Palazzo, M. C., Oldani, L., & Altamura, A. C. (2010). The Noradrenergic Action in Antidepressant Treatments: Pharmacological and Clinical Aspects. CNS Neuroscience & Therapeutics, 17(6), 723–732. DOI: 10.1111/j.1755-5949.2010.00217.x
- 28Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H.-J., Grace, A. A., Dolan, R. J., Heinz, A., & Schlagenhauf, F. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences, 112(5), 1595–1600. DOI: 10.1073/pnas.1417219112
- 29Dombrovski, A. Y., Szanto, K., Clark, L., Aizenstein, H. J., Chase, H. W., Reynolds, C. F., & Siegle, G. J. (2015). Corticostriatothalamic reward prediction error signals and executive control in late-life depression. Psychological Medicine, 45(7), 1413–1424. DOI: 10.1017/S0033291714002517
- 30Dombrovski, A. Y., Szanto, K., Clark, L., Reynolds, C. F., & Siegle, G. J. (2013). Reward Signals, Attempted Suicide, and Impulsivity in Late-Life Depression. JAMA Psychiatry, 70(10), 1020. DOI: 10.1001/jamapsychiatry.2013.75
- 31Eckstein, M. K., Master, S. L., Xia, L., Dahl, R. E., Wilbrecht, L., & Collins, A. G. E. (2021). Learning Rates Are Not All the Same: The Interpretation of Computational Model Parameters Depends on the Context (p. 2021.05.28.446162). DOI: 10.1101/2021.05.28.446162
- 32Eckstein, M. K., Wilbrecht, L., & Collins, A. G. (2021). What do reinforcement learning models measure? Interpreting model parameters in cognition and neuroscience. Current Opinion in Behavioral Sciences, 41, 128–137. DOI: 10.1016/j.cobeha.2021.06.004
- 33Eldar, E., & Niv, Y. (2015). Interaction between emotional state and learning underlies mood instability. Nature Communications, 6(1), 6149. DOI: 10.1038/ncomms7149
- 34Eldar, E., Roth, C., Dayan, P., & Dolan, R. J. (2018). Decodability of Reward Learning Signals Predicts Mood Fluctuations. Current Biology, 28(9), 1433–1439.
e7 . DOI: 10.1016/j.cub.2018.03.038 - 35Eldar, E., Rutledge, R. B., Dolan, R. J., & Niv, Y. (2016). Mood as Representation of Momentum. Trends in Cognitive Sciences, 20(1), 15–24. DOI: 10.1016/j.tics.2015.07.010
- 36Fletcher, P. J., & Korth, K. M. (1999). Activation of 5-HT1B receptors in the nucleus accumbens reduces amphetamine-induced enhancement of responding for conditioned reward. Psychopharmacology, 142(2), 165–174. DOI: 10.1007/s002130050876
- 37Fletcher, P. J., Ming, Z.-H., & Higgins, G. A. (1993). Conditioned place preference induced by microinjection of 8-OH-DPAT into the dorsal or median raphe nucleus. Psychopharmacology, 113(1), 31–36. DOI: 10.1007/BF02244330
- 38Fletcher, P. J., Tampakeras, M., & Yeomans, J. S. (1995). Median raphe injections of 8-OH-DPAT lower frequency thresholds for lateral hypothalamic self-stimulation. Pharmacology Biochemistry and Behavior, 52(1), 65–71. DOI: 10.1016/0091-3057(94)00441-K
- 39Frey, A.-L., & McCabe, C. (2020). Effects of serotonin and dopamine depletion on neural prediction computations during social learning. Neuropsychopharmacology, 45(9), 1431–1437. DOI: 10.1038/s41386-020-0678-z
- 40Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., & Daw, N. D. (2016). Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. ELife, 5,
e11305 . DOI: 10.7554/eLife.11305 - 41Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience, 41(1), 1–24. DOI: 10.1016/0306-4522(91)90196-u
- 42Grace, A. A. (2000). The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction (Abingdon, England), 95 Suppl 2, S119–128. DOI: 10.1080/09652140050111690
- 43Gradin, V. B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., Milders, M., Reid, I., Hall, J., & Steele, J. D. (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain: A Journal of Neurology, 134(Pt 6), 1751–1764. DOI: 10.1093/brain/awr059
- 44Greenberg, T., Chase, H. W., Almeida, J. R., Stiffler, R., Zevallos, C. R., Aslam, H. A., Deckersbach, T., Weyandt, S., Cooper, C., Toups, M., Carmody, T., Kurian, B., Peltier, S., Adams, P., McInnis, M. G., Oquendo, M. A., McGrath, P. J., Fava, M., Weissman, M., … Phillips, M. L. (2015). Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study. The American Journal of Psychiatry, 172(9), 881–891. DOI: 10.1176/appi.ajp.2015.14050594
- 45Haber, S. N. (2014). The place of dopamine in the cortico-basal ganglia circuit. Neuroscience, 282, 248–257. DOI: 10.1016/j.neuroscience.2014.10.008
- 46Halahakoon, D. C., Kieslich, K., O’Driscoll, C., Nair, A., Lewis, G., & Roiser, J. P. (2020). Reward-Processing Behavior in Depressed Participants Relative to Healthy Volunteers. JAMA Psychiatry, 77(12), 1286–1295. DOI: 10.1001/jamapsychiatry.2020.2139
- 47Harmer, C. J., Goodwin, G. M., & Cowen, P. J. (2009). Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. The British Journal of Psychiatry, 195(2), 102–108. DOI: 10.1192/bjp.bp.108.051193
- 48Harmer, C. J., O’Sullivan, U., Favaron, E., Massey-Chase, R., Ayres, R., Reinecke, A., Goodwin, G. M., & Cowen, P. J. (2009). Effect of acute antidepressant administration on negative affective bias in depressed patients. The American Journal of Psychiatry, 166(10), 1178–1184. DOI: 10.1176/appi.ajp.2009.09020149
- 49Harrison, A. A., Everitt, B. J., & Robbins, T. W. (1997). Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: Interactions with dopaminergic mechanisms. Psychopharmacology, 133(4), 329–342. DOI: 10.1007/s002130050410
- 50Harrison, A. A., Everitt, B. J., & Robbins, T. W. (1999). Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behavioural Brain Research, 100(1–2), 99–112. DOI: 10.1016/s0166-4328(98)00117-x
- 51Hauser, T. U., Eldar, E., & Dolan, R. J. (2017). Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proceedings of the National Academy of Sciences, 114(35), E7395–E7404. DOI: 10.1073/pnas.1705643114
- 52Heller, A. S., Ezie, C. E. C., Otto, A. R., & Timpano, K. R. (2018). Model-based learning and individual differences in depression: The moderating role of stress. Behaviour Research and Therapy, 111, 19–26. DOI: 10.1016/j.brat.2018.09.007
- 53Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1(4), 304–309. DOI: 10.1038/1124
- 54Huang, Y., Yaple, Z. A., & Yu, R. (2020). Goal-oriented and habitual decisions: Neural signatures of model-based and model-free learning. NeuroImage, 215, 116834. DOI: 10.1016/j.neuroimage.2020.116834
- 55Huys, Q. J. M., Daw, N. D., & Dayan, P. (2015). Depression: A Decision-Theoretic Analysis. Annual Review of Neuroscience, 38(1), 1–23. DOI: 10.1146/annurev-neuro-071714-033928
- 56Huys, Q. J. M., Guitart-Masip, M., Dolan, R. J., & Dayan, P. (2015). Decision-Theoretic Psychiatry. Clinical Psychological Science, 3(3), 400–421. DOI: 10.1177/2167702614562040
- 57Huys, Q. J. M., Pizzagalli, D. A., Bogdan, R., & Dayan, P. (2013). Mapping anhedonia onto reinforcement learning: A behavioural meta-analysis. Biology of Mood & Anxiety Disorders, 3(1), 12. DOI: 10.1186/2045-5380-3-12
- 58Jackson, D. M., Andén, N. E., & Dahlström, A. (1975). A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain. Psychopharmacologia, 45(2), 139–149. DOI: 10.1007/BF00429052
- 59Kanen, J. W., Apergis-Schoute, A. M., Yellowlees, R., Arntz, F. E., van der Flier, F. E., Price, A., Cardinal, R. N., Christmas, D. M., Clark, L., Sahakian, B. J., Crockett, M. J., & Robbins, T. W. (2021). Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Molecular Psychiatry, 1–11. DOI: 10.1038/s41380-021-01240-9
- 60Kapur, S., & Remington, G. (1996). Serotonin-dopamine interaction and its relevance to schizophrenia. The American Journal of Psychiatry, 153(4), 466–476. DOI: 10.1176/ajp.153.4.466
- 61Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems. Psychological Science, 28(9), 1321–1333. DOI: 10.1177/0956797617708288
- 62Kranz, G. S., Kasper, S., & Lanzenberger, R. (2010). Reward and the serotonergic system. Neuroscience, 166(4), 1023–1035. DOI: 10.1016/j.neuroscience.2010.01.036
- 63Krystal, A. D., Pizzagalli, D. A., Smoski, M., Mathew, S. J., Nurnberger, J., Lisanby, S. H., Iosifescu, D., Murrough, J. W., Yang, H., Weiner, R. D., Calabrese, J. R., Sanacora, G., Hermes, G., Keefe, R. S. E., Song, A., Goodman, W., Szabo, S. T., Whitton, A. E., Gao, K., & Potter, W. Z. (2020). A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nature Medicine, 26(5), 760–768. DOI: 10.1038/s41591-020-0806-7
- 64Krystal, J. H., Sanacora, G., Blumberg, H., Anand, A., Charney, D. S., Marek, G., Epperson, C. N., Goddard, A., & Mason, G. F. (2002). Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Molecular Psychiatry, 7(1), S71–S80. DOI: 10.1038/sj.mp.4001021
- 65Krystal, J. H., Sanacora, G., & Duman, R. S. (2013). Rapid-acting glutamatergic antidepressants: The path to ketamine and beyond. Biological Psychiatry, 73(12), 1133–1141. DOI: 10.1016/j.biopsych.2013.03.026
- 66Kumar, P., Goer, F., Murray, L., Dillon, D. G., Beltzer, M. L., Cohen, A. L., Brooks, N. H., & Pizzagalli, D. A. (2018). Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology, 43(7), 1581–1588. DOI: 10.1038/s41386-018-0032-x
- 67Langdon, A. J., Sharpe, M. J., Schoenbaum, G., & Niv, Y. (2018). Model-based predictions for dopamine. Current Opinion in Neurobiology, 49, 1–7. DOI: 10.1016/j.conb.2017.10.006
- 68Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural Computations Underlying Arbitration between Model-Based and Model-free Learning. Neuron, 81(3), 687–699. DOI: 10.1016/j.neuron.2013.11.028
- 69Lempert, K. M., & Pizzagalli, D. A. (2010). Delay Discounting and Future-directed Thinking in Anhedonic Individuals. Journal of Behavior Therapy and Experimental Psychiatry, 41(3), 258–264. DOI: 10.1016/j.jbtep.2010.02.003
- 70Li, Y., Zhong, W., Wang, D., Feng, Q., Liu, Z., Zhou, J., Jia, C., Hu, F., Zeng, J., Guo, Q., Fu, L., & Luo, M. (2016). Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nature Communications, 7(1), 10503. DOI: 10.1038/ncomms10503
- 71Lukinova, E., Wang, Y., Lehrer, S. F., & Erlich, J. C. (2019). Time preferences are reliable across time-horizons and verbal versus experiential tasks. ELife, 8,
e39656 . DOI: 10.7554/eLife.39656 - 72Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837–841. DOI: 10.1038/nature08028
- 73Maya Vetencourt, J. F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., O’Leary, O. F., Castrén, E., & Maffei, L. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science (New York, N.Y.), 320(5874), 385–388. DOI: 10.1126/science.1150516
- 74Meyniel, F., Goodwin, G. M., Deakin, J. W., Klinge, C., MacFadyen, C., Milligan, H., Mullings, E., Pessiglione, M., & Gaillard, R. (2016). A specific role for serotonin in overcoming effort cost. ELife, 5,
e17282 . DOI: 10.7554/eLife.17282 - 75Michely, J., Eldar, E., Erdman, A., Martin, I. M., & Dolan, R. J. (2020). SSRIs modulate asymmetric learning from reward and punishment. BioRxiv, 2020.05.21.108266. DOI: 10.1101/2020.05.21.108266
- 76Michely, J., Eldar, E., Martin, I. M., & Dolan, R. J. (2020). A mechanistic account of serotonin’s impact on mood. Nature Communications, 11(1), 2335. DOI: 10.1038/s41467-020-16090-2
- 77Miyazaki, K., Miyazaki, K. W., & Doya, K. (2011). Activation of Dorsal Raphe Serotonin Neurons Underlies Waiting for Delayed Rewards. Journal of Neuroscience, 31(2), 469–479. DOI: 10.1523/JNEUROSCI.3714-10.2011
- 78Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology, 191(3), 507–520. DOI: 10.1007/s00213-006-0502-4
- 79Otto, A. R., Gershman, S. J., Markman, A. B., & Daw, N. D. (2013). The curse of planning: Dissecting multiple reinforcement-learning systems by taxing the central executive. Psychological Science, 24(5), 751–761. DOI: 10.1177/0956797612463080
- 80Palminteri, S., Wyart, V., & Koechlin, E. (2017). The Importance of Falsification in Computational Cognitive Modeling. Trends in Cognitive Sciences, 21(6), 425–433. DOI: 10.1016/j.tics.2017.03.011
- 81Paul, E. D., & Lowry, C. A. (2013). Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders. Journal of Psychopharmacology (Oxford, England), 27(12), 1090–1106. DOI: 10.1177/0269881113490328
- 82Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 1042–1045. DOI: 10.1038/nature05051
- 83Pizzagalli, D. A., Smoski, M., Ang, Y.-S., Whitton, A. E., Sanacora, G., Mathew, S. J., Nurnberger, J., Lisanby, S. H., Iosifescu, D. V., Murrough, J. W., Yang, H., Weiner, R. D., Calabrese, J. R., Goodman, W., Potter, W. Z., & Krystal, A. D. (2020). Selective kappa-opioid antagonism ameliorates anhedonic behavior: Evidence from the Fast-fail Trial in Mood and Anxiety Spectrum Disorders (FAST-MAS). Neuropsychopharmacology, 45(10), 1656–1663. DOI: 10.1038/s41386-020-0738-4
- 84Pulcu, E., Trotter, P. D., Thomas, E. J., McFarquhar, M., Juhasz, G., Sahakian, B. J., Deakin, J. F. W., Zahn, R., Anderson, I. M., & Elliott, R. (2014). Temporal discounting in major depressive disorder. Psychological Medicine, 44(9), 1825–1834. DOI: 10.1017/S0033291713002584
- 85Rutledge, R. B., Moutoussis, M., Smittenaar, P., Zeidman, P., Taylor, T., Hrynkiewicz, L., Lam, J., Skandali, N., Siegel, J. Z., Ousdal, O. T., Prabhu, G., Dayan, P., Fonagy, P., & Dolan, R. J. (2017). Association of Neural and Emotional Impacts of Reward Prediction Errors With Major Depression. JAMA Psychiatry, 74(8), 790–797. DOI: 10.1001/jamapsychiatry.2017.1713
- 86Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2014). A computational and neural model of momentary subjective well-being. Proceedings of the National Academy of Sciences, 111(33), 12252–12257. DOI: 10.1073/pnas.1407535111
- 87Salamone, J. D., & Correa, M. (2002). Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 137(1–2), 3–25. DOI: 10.1016/s0166-4328(02)00282-6
- 88Salinas-Hernández, X. I., Vogel, P., Betz, S., Kalisch, R., Sigurdsson, T., & Duvarci, S. (2018). Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. ELife, 7,
e38818 . DOI: 10.7554/eLife.38818 - 89Saunders, B. T., Richard, J. M., Margolis, E. B., & Janak, P. H. (2018). Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nature Neuroscience, 21(8), 1072–1083. DOI: 10.1038/s41593-018-0191-4
- 90Schneier, F. R., Slifstein, M., Whitton, A. E., Pizzagalli, D. A., Reinen, J., McGrath, P. J., Iosifescu, D. V., & Abi-Dargham, A. (2018). Dopamine Release in Antidepressant-Naive Major Depressive Disorder: A Multimodal [11C]-(+)-PHNO Positron Emission Tomography and Functional Magnetic Resonance Imaging Study. Biological Psychiatry, 84(8), 563–573. DOI: 10.1016/j.biopsych.2018.05.014
- 91Scholl, J., Kolling, N., Nelissen, N., Browning, M., Rushworth, M. F. S., & Harmer, C. J. (2017). Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals. PLOS Biology, 15(2),
e2000756 . DOI: 10.1371/journal.pbio.2000756 - 92Schultz, W. (1998). Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology, 80(1), 1–27. DOI: 10.1152/jn.1998.80.1.1
- 93Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural Substrate of Prediction and Reward. Science, 275(5306), 1593–1599. DOI: 10.1126/science.275.5306.1593
- 94Schweighofer, N., Bertin, M., Shishida, K., Okamoto, Y., Tanaka, S. C., Yamawaki, S., & Doya, K. (2008). Low-serotonin levels increase delayed reward discounting in humans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(17), 4528–4532. DOI: 10.1523/JNEUROSCI.4982-07.2008
- 95Schweighofer, N., Tanaka, S. C., & Doya, K. (2007). Serotonin and the Evaluation of Future Rewards. Annals of the New York Academy of Sciences, 1104(1), 289–300. DOI: 10.1196/annals.1390.011
- 96Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P., & Dolan, R. (2012). Serotonin Selectively Modulates Reward Value in Human Decision-Making. Journal of Neuroscience, 32(17), 5833–5842. DOI: 10.1523/JNEUROSCI.0053-12.2012
- 97Sharp, M. E., Foerde, K., Daw, N. D., & Shohamy, D. (2016). Dopamine selectively remediates ‘model-based’ reward learning: A computational approach. Brain, 139(2), 355–364. DOI: 10.1093/brain/awv347
- 98Sharpe, M. J., Chang, C. Y., Liu, M. A., Batchelor, H. M., Mueller, L. E., Jones, J. L., Niv, Y., & Schoenbaum, G. (2017). Dopamine transients are sufficient and necessary for acquisition of model-based associations. Nature Neuroscience, 20(5), 735–742. DOI: 10.1038/nn.4538
- 99Smittenaar, P., FitzGerald, T. H. B., Romei, V., Wright, N. D., & Dolan, R. J. (2013). Disruption of Dorsolateral Prefrontal Cortex Decreases Model-Based in Favor of Model-free Control in Humans. Neuron, 80(4), 914–919. DOI: 10.1016/j.neuron.2013.08.009
- 100Sokolowski, J. D., & Salamone, J. D. (1998). The role of accumbens dopamine in lever pressing and response allocation: Effects of 6-OHDA injected into core and dorsomedial shell. Pharmacology, Biochemistry, and Behavior, 59(3), 557–566. DOI: 10.1016/s0091-3057(97)00544-3
- 101Soubrié, P. (1986). Reconciling the role of central serotonin neurons in human and animal behavior. Behavioral and Brain Sciences, 9(2), 319–335. DOI: 10.1017/S0140525X00022871
- 102Stauffer, W. R., Lak, A., Yang, A., Borel, M., Paulsen, O., Boyden, E. S., & Schultz, W. (2016). Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell, 166(6), 1564–1571.
e6 . DOI: 10.1016/j.cell.2016.08.024 - 103Takahashi, Y. K., Batchelor, H. M., Liu, B., Khanna, A., Morales, M., & Schoenbaum, G. (2017).
Dopamine Neurons Respond to Errors in the Prediction of Sensory Features of Expected Rewards . Neuron, 95(6), 1395–1405.e3 . Scopus. DOI: 10.1016/j.neuron.2017.08.025 - 104Treadway, M. T., Bossaller, N., Shelton, R. C., & Zald, D. H. (2012). Effort-Based Decision-Making in Major Depressive Disorder: A Translational Model of Motivational Anhedonia. Journal of Abnormal Psychology, 121(3), 553–558. DOI: 10.1037/a0028813
- 105Treadway, M. T., & Zald, D. H. (2011). Reconsidering Anhedonia in Depression: Lessons from Translational Neuroscience. Neuroscience and Biobehavioral Reviews, 35(3), 537–555. DOI: 10.1016/j.neubiorev.2010.06.006
- 106Tsypes, A., Szanto, K., Bridge, J. A., Brown, V. M., Keilp, J. G., & Dombrovski, A. Y. (2022). Delay discounting in suicidal behavior: Myopic preference or inconsistent valuation? Journal of Psychopathology and Clinical Science, 131(1), 34–44. DOI: 10.1037/abn0000717
- 107Ubl, B., Kuehner, C., Kirsch, P., Ruttorf, M., Diener, C., & Flor, H. (2015). Altered neural reward and loss processing and prediction error signalling in depression. Social Cognitive and Affective Neuroscience, 10(8), 1102–1112. DOI: 10.1093/scan/nsu158
- 108Viglione, A., Chiarotti, F., Poggini, S., Giuliani, A., & Branchi, I. (2019). Predicting antidepressant treatment outcome based on socioeconomic status and citalopram dose. The Pharmacogenomics Journal, 19(6), 538–546. DOI: 10.1038/s41397-019-0080-6
- 109Walsh, A. E. L., Browning, M., Drevets, W. C., Furey, M., & Harmer, C. J. (2018). Dissociable temporal effects of bupropion on behavioural measures of emotional and reward processing in depression. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1742). DOI: 10.1098/rstb.2017.0030
- 110Weissengruber, S., Lee, S. W., O’Doherty, J. P., & Ruff, C. C. (2019). Neurostimulation Reveals Context-Dependent Arbitration Between Model-Based and Model-Free Reinforcement Learning. Cerebral Cortex, 29(11), 4850–4862. DOI: 10.1093/cercor/bhz019
- 111Westbrook, A., Bosch, R. van den, Määttä, J. I., Hofmans, L., Papadopetraki, D., Cools, R., & Frank, M. J. (2020). Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science, 367(6484), 1362–1366. DOI: 10.1126/science.aaz5891
- 112Westbrook, A., Frank, M. J., & Cools, R. (2021). A mosaic of cost–benefit control over cortico-striatal circuitry. Trends in Cognitive Sciences, 25(8), 710–721. DOI: 10.1016/j.tics.2021.04.007
- 113Whitton, A. E., Reinen, J. M., Slifstein, M., Ang, Y.-S., McGrath, P. J., Iosifescu, D. V., Abi-Dargham, A., Pizzagalli, D. A., & Schneier, F. R. (2020). Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain, 143(2), 701–710. DOI: 10.1093/brain/awaa002
- 114Wogar, M. A., Bradshaw, C. M., & Szabadi, E. (1993). Effect of lesions of the ascending 5-hydroxytryptaminergic pathways on choice between delayed reinforcers. Psychopharmacology, 111(2), 239–243. DOI: 10.1007/BF02245530
- 115Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine Enhances Model-Based over Model-Free Choice Behavior. Neuron, 75(3–4), 418–424. DOI: 10.1016/j.neuron.2012.03.042
- 116Zimmerman, M., Ellison, W., Young, D., Chelminski, I., & Dalrymple, K. (2015). How many different ways do patients meet the diagnostic criteria for major depressive disorder? Comprehensive Psychiatry, 56, 29–34. DOI: 10.1016/j.comppsych.2014.09.007
