Have a personal or library account? Click to login
The Reward-Complexity Trade-off in Schizophrenia Cover

The Reward-Complexity Trade-off in Schizophrenia

By: Samuel J. Gershman and  Lucy Lai  
Open Access
|May 2021

References

  1. 1Archer, E., Park, I., & Pillow, J. (2013). Bayesian and quasi-Bayesian estimators for mutual information from discrete data. Entropy, 15, 17381755. DOI: 10.3390/e15051738
  2. 2Arimoto, S. (1972). An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Transactions on Information Theory, 18, 1420. DOI: 10.1109/TIT.1972.1054753
  3. 3Bar-Gad, I., Morris, G., & Bergman, H. (2003). Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71, 439473. DOI: 10.1016/j.pneurobio.2003.12.001
  4. 4Bates, C. J., & Jacobs, R. A. (2020). Efficient data compression in perception and perceptual memory. Psychological Review, 127, 891917. DOI: 10.1037/rev0000197
  5. 5Berger, T. (1971). Rate Distortion Theory: A Mathematical Basis for Data Compression. NJ: Prentice-Hall.
  6. 6Blahut, R. (1972). Computation of channel capacity and rate-distortion functions. IEEE transactions on Information Theory, 18, 460473. DOI: 10.1109/TIT.1972.1054855
  7. 7Brady, T., Konkle, T., & Alvarez, G. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138, 487502. DOI: 10.1037/a0016797
  8. 8Collins, A. G. (2018). The tortoise and the hare: Interactions between reinforcement learning and working memory. Journal of Cognitive Neuroscience, 30, 14221432. DOI: 10.1162/jocn_a_01238
  9. 9Collins, A. G., Albrecht, M. A., Waltz, J. A., Gold, J. M., & Frank, M. J. (2017a). Interactions among working memory, reinforcement learning, and effort in value-based choice: A new paradigm and selective deficits in schizophrenia. Biological Psychiatry, 82, 431439. DOI: 10.1016/j.biopsych.2017.05.017
  10. 10Collins, A. G., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank, M. J. (2014). Working memory contributions to reinforcement learning impairments in schizophrenia. Journal of Neuroscience, 34, 1374713756. DOI: 10.1523/JNEUROSCI.0989-14.2014
  11. 11Collins, A. G., Ciullo, B., Frank, M. J., & Badre, D. (2017b). Working memory load strengthens reward prediction errors. Journal of Neuroscience, 37, 43324342. DOI: 10.1523/JNEUROSCI.2700-16.2017
  12. 12Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience, 35, 10241035. DOI: 10.1111/j.1460-9568.2011.07980.x
  13. 13Collins, A. G., & Frank, M. J. (2018). Within-and across-trial dynamics of human eeg reveal cooperative interplay between reinforcement learning and working memory. Proceedings of the National Academy of Sciences, 115, 25022507. DOI: 10.1073/pnas.1720963115
  14. 14Culbreth, A., Westbrook, A., & Barch, D. (2016). Negative symptoms are associated with an increased subjective cost of cognitive effort. Journal of Abnormal Psychology, 125, 528536. DOI: 10.1037/abn0000153
  15. 15Culbreth, A. J., Moran, E. K., & Barch, D. M. (2018). Effort-based decision-making in schizophrenia. Current Opinion in Behavioral Sciences, 22, 16. DOI: 10.1016/j.cobeha.2017.12.003
  16. 16Dezfouli, A., & Balleine, B. W. (2012). Habits, action sequences and reinforcement learning. European Journal of Neuroscience, 35, 10361051. DOI: 10.1111/j.1460-9568.2012.08050.x
  17. 17Dowd, E. C., Frank, M. J., Collins, A., Gold, J. M., & Barch, D. M. (2016). Probabilistic reinforcement learning in patients with schizophrenia: relationships to anhedonia and avolition. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 460473. DOI: 10.1016/j.bpsc.2016.05.005
  18. 18Fortgang, R., Srihari, V., & Cannon, T. (2020). Cognitive effort and amotivation in first-episode psychosis. Journal of Abnormal Psychology, 129, 422431. DOI: 10.1037/abn0000509
  19. 19Fox, R., Pakman, A., & Tishby, N. (2016). Taming the noise in reinforcement learning via soft updates. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (pp. 202211).
  20. 20Gershman, S. J. (2020). Origin of perseveration in the trade-off between reward and complexity. Cognition, 204, 104394. DOI: 10.1016/j.cognition.2020.104394
  21. 21Gold, J. M., Kool, W., Botvinick, M. M., Hubzin, L., August, S., & Waltz, J. A. (2015). Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective, & Behavioral Neuroscience, 15, 145154. DOI: 10.3758/s13415-014-0308-5
  22. 22Grau-Moya, J., Leibfried, F., & Vrancx, P. (2018). Soft q-learning with mutual-information regularization. In International Conference on Learning Representations.
  23. 23Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. Volume 80 of Proceedings of Machine Learning Research (pp. 18611870). Stockholm Sweden: Stockholmsmässan. PMLR.
  24. 24Hernaus, D., Xu, Z., Brown, E., Ruiz, R., Frank, M., Gold, J., & Waltz, J. (2018). Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cognitive, Affective, & Behavioral Neuroscience, 18, 13381351. DOI: 10.3758/s13415-018-0643-z
  25. 25Horan, W. P., Reddy, L. F., Barch, D. M., Buchanan, R. W., Dunayevich, E., Gold, J. M., Marder, S. R., Wynn, J. K., Young, J. W., & Green, M. F. (2015). Effort-based decision-making paradigms for clinical trials in schizophrenia: Part 2—external validity and correlates. Schizophrenia Bulletin, 41(5), 10551065. DOI: 10.1093/schbul/sbv090
  26. 26Hutter, M. (2002). Distribution of mutual information. In Advances in Neural Information Processing Systems (pp. 399406).
  27. 27Insel, C., Reinen, J., Weber, J., Wager, T. D., Jarskog, L. F., Shohamy, D., & Smith, E. E. (2014). Antipsychotic dose modulates behavioral and neural responses to feedback during reinforcement learning in schizophrenia. Cognitive, Affective, & Behavioral Neuroscience, 14, 189201. DOI: 10.3758/s13415-014-0261-3
  28. 28Joel, D., Niv, Y., & Ruppin, E. (2002). Actor–critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15, 535547. DOI: 10.1016/S0893-6080(02)00047-3
  29. 29Konda, V. R., & Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in Neural Information Processing Systems (pp. 10081014).
  30. 30Kool, W., McGuire, J., Rosen, Z., & Botvinick, M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139, 665682. DOI: 10.1037/a0020198
  31. 31Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology, 114, 599611. DOI: 10.1037/0021-843X.114.4.599
  32. 32Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347356. DOI: 10.1038/nn.3655
  33. 33Malloy, T., Sims, C. R., Klinger, T., Liu, M., Riemer, M., & Tesauro, G. (2020). Deep RL with information constrained policies: Generalization in continuous control. arXiv preprint arXiv:2010.04646.
  34. 34Miller, G. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 8197. DOI: 10.1037/h0043158
  35. 35Parush, N., Tishby, N., & Bergman, H. (2011). Dopaminergic balance between reward maximization and policy complexity. Frontiers in Systems Neuroscience, 5. DOI: 10.3389/fnsys.2011.00022
  36. 36Patzelt, E. H., Kool, W., Millner, A. J., & Gershman, S. J. (2019). The transdiagnostic structure of mental effort avoidance. Scientific Reports, 9, 110. DOI: 10.1038/s41598-018-37802-1
  37. 37Reddy, L. F., Horan, W. P., Barch, D. M., Buchanan, R. W., Dunayevich, E., Gold, J. M., Lyons, N., Marder, S. R., Treadway, M. T., Wynn, J. K., et al. (2015). Effort-based decisionmaking paradigms for clinical trials in schizophrenia: part 1—psychometric characteristics of 5 paradigms. Schizophrenia Bulletin, 41, 10451054. DOI: 10.1093/schbul/sbv089
  38. 38Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian model selection for group studies—revisited. NeuroImage, 84, 971985. DOI: 10.1016/j.neuroimage.2013.08.065
  39. 39Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, (pp. 400407). DOI: 10.1214/aoms/1177729586
  40. 40Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
  41. 41Sims, C., Jacobs, R., & Knill, D. (2012). An ideal observer analysis of visual working memory. Psychological Review, 119, 807830. DOI: 10.1037/a0029856
  42. 42Sims, C. R. (2016). Rate-distortion theory and human perception. Cognition, 152, 181198. DOI: 10.1016/j.cognition.2016.03.020
  43. 43Still, S., & Precup, D. (2012). An information-theoretic approach to curiosity-driven reinforcement learning. Theory in Biosciences, 131, 139148. DOI: 10.1007/s12064-011-0142-z
  44. 44Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
  45. 45Tishby, N., & Polani, D. (2011). Information theory of decisions and actions. In Perception-action cycle (pp. 601636). Springer. DOI: 10.1007/978-1-4419-1452-1_19
  46. 46Tomov, M. S., Yagati, S., Kumar, A., Yang, W., & Gershman, S. J. (2020). Discovery of hierarchical representations for efficient planning. PLoS Computational Biology, 16, e1007594. DOI: 10.1371/journal.pcbi.1007594
  47. 47Weickert, T. W., Goldberg, T. E., Egan, M. F., Apud, J. A., Meeter, M., Myers, C. E., Gluck, M. A., & Weinberger, D. R. (2010). Relative risk of probabilistic category learning deficits in patients with schizophrenia and their siblings. Biological Psychiatry, 67, 948955. DOI: 10.1016/j.biopsych.2009.12.027
  48. 48Wolf, D. H., Satterthwaite, T. D., Kantrowitz, J. J., Katchmar, N., Vandekar, L., Elliott, M. A., & Ruparel, K. (2014). Amotivation in schizophrenia: integrated assessment with behavioral, clinical, and imaging measures. Schizophrenia Bulletin, 40, 13281337. DOI: 10.1093/schbul/sbu026
DOI: https://doi.org/10.5334/cpsy.71 | Journal eISSN: 2379-6227
Language: English
Submitted on: Apr 26, 2021
Accepted on: May 5, 2021
Published on: May 25, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Samuel J. Gershman, Lucy Lai, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.