Have a personal or library account? Click to login
Bayesian Workflow for Generative Modeling in Computational Psychiatry Cover

References

  1. 1Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., van Langen, J., & Kievit, R. A. (2021). Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Research, 4, 63. 10.12688/wellcomeopenres.15191.2
  2. 2Ballard, I. C., & McClure, S. M. (2019). Joint modeling of reaction times and choice improves parameter identifiability in reinforcement learning models. Journal of Neuroscience Methods, 317, 3744. 10.1016/j.jneumeth.2019.01.006
  3. 3Betancourt, M. (2020). Towards A Principled Bayesian Workflow. https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
  4. 4Bonnet, C., & Ars, J. F. (2008). Reaction times as a measure of uncertainty. Psicothema, 20(1), 4348.
  5. 5Bröker, F., Marshall, L., Bestmann, S., & Dayan, P. (2018). Forget-me-some: General versus special purpose models in a hierarchical probabilistic task. PLOS ONE, 13(10), e0205974. 10.1371/journal.pone.0205974
  6. 6Broyden, C. G. (1970). The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA Journal of Applied Mathematics, 6(1), 7690. 10.1093/imamat/6.1.76
  7. 7Clithero, J. A. (2018). Improving out-of-sample predictions using response times and a model of the decision process. Journal of Economic Behavior & Organization, 148, 344375. 10.1016/J.JEBO.2018.02.007
  8. 8Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data. PLoS Computational Biology, 10(1). 10.1371/journal.pcbi.1003441
  9. 9Daunizeau, J., den Ouden, H. E. M., Pessiglione, M., Kiebel, S. J., Friston, K. J., & Stephan, K. E. (2010a). Observing the observer (II): Deciding when to decide. PLoS ONE, 5(12). 10.1371/journal.pone.0015555
  10. 10Daunizeau, J., den Ouden, H. E. M., Pessiglione, M., Kiebel, S. J., Stephan, K. E., & Friston, K. J. (2010b). Observing the observer (I): Meta-bayesian models of learning and decision-making. PLoS ONE, 5(12). 10.1371/journal.pone.0015554
  11. 11den Ouden, H. E. M., Friston, K. J., Daw, N. D., McIntosh, A. R., & Stephan, K. E. (2009). A Dual Role for Prediction Error in Associative Learning. Cerebral Cortex, 19(5), 11751185. 10.1093/cercor/bhn161
  12. 12Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, 13(3), 317322. 10.1093/comjnl/13.3.317
  13. 13Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E. I., Mathys, C., Müller-Schrader, M., Pereira, I., Petzschner, F. H., Raman, S., Schöbi, D., Toussaint, B., Weber, L. A., … Stephan, K. E. (2021). TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Frontiers in Psychiatry, 12, 857. 10.3389/fpsyt.2021.680811
  14. 14Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815836. 10.1098/rstb.2005.1622
  15. 15Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press. 10.1201/b16018
  16. 16Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian Workflow. arXiv. 10.48550/arxiv.2011.01808
  17. 17Gershman, S. J. (2016). Empirical priors for reinforcement learning models. Journal of Mathematical Psychology, 71, 16. 10.1016/j.jmp.2016.01.006
  18. 18Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of Computation, 24(109), 2326. 10.1090/S0025-5718-1970-0258249-6
  19. 19Harrison, O. K., Köchli, L., Marino, S., Luechinger, R., Hennel, F., Brand, K., Hess, A. J., Frässle, S., Iglesias, S., Vinckier, F., Petzschner, F. H., Harrison, S. J., & Stephan, K. E. (2021). Interoception of breathing and its relationship with anxiety. Neuron, 114. 10.1016/J.NEURON.2021.09.045
  20. 20Hein, T. P., de Fockert, J., & Ruiz, M. H. (2021). State anxiety biases estimates of uncertainty and impairs reward learning in volatile environments. NeuroImage, 224, 117424. 10.1016/j.neuroimage.2020.117424
  21. 21Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8(8 JUN), 150. 10.3389/fnins.2014.00150
  22. 22Iglesias, S., Kasper, L., Harrison, S. J., Manka, R., Mathys, C., & Stephan, K. E. (2021). Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning. NeuroImage, 226, 117590. 10.1016/j.neuroimage.2020.117590
  23. 23Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E. M., & Stephan, K. E. (2013). Hierarchical Prediction Errors in Midbrain and Basal Forebrain during Sensory Learning. Neuron, 80(2), 519530. 10.1016/j.neuron.2013.09.009
  24. 24Kapur, S., Phillips, A. G., & Insel, T. R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it. Molecular Psychiatry, 17(12), 11741179. 10.1038/mp.2012.105
  25. 25Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in psychtoolbox-3?
  26. 26Kraemer, P. M., Fontanesi, L., Spektor, M. S., & Gluth, S. (2021). Response time models separate single- and dual-process accounts of memory-based decisions. Psychonomic Bulletin and Review, 28(1), 304323. 10.3758/s13423-020-01794-9
  27. 27Lawson, R. P., Bisby, J., Nord, C. L., Burgess, N., & Rees, G. (2021). The Computational, Pharmacological, and Physiological Determinants of Sensory Learning under Uncertainty. Current Biology, 31(1), 163172.e4. 10.1016/J.CUB.2020.10.043
  28. 28Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 12931299. 10.1038/nn.4615
  29. 29Loeys, T., Rosseel, Y., & Baten, K. (2011). A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments. Psychometrika 2011 76:3, 76(3), 487503. 10.1007/S11336-011-9211-Y
  30. 30Marshall, L., Mathys, C., Ruge, D., de Berker, A. O., Dayan, P., Stephan, K. E., & Bestmann, S. (2016). Pharmacological Fingerprints of Contextual Uncertainty. PLOS Biology, 14(11), e1002575. 10.1371/journal.pbio.1002575
  31. 31Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5(May), 120. 10.3389/fnhum.2011.00039
  32. 32Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 8(November), 124. 10.3389/fnhum.2014.00825
  33. 33McDougle, S. D., & Collins, A. G. E. (2021). Modeling the influence of working memory, reinforcement, and action uncertainty on reaction time and choice during instrumental learning. Psychonomic Bulletin and Review, 28(1), 2039. 10.3758/s13423-020-01774-z
  34. 34Miletić, S., Boag, R. J., Trutti, A. C., Stevenson, N., Forstmann, B. U., & Heathcote, A. (2021). A new model of decision processing in instrumental learning tasks. eLife, 10, 155. 10.7554/ELIFE.63055
  35. 35Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72. 10.1016/J.TICS.2011.11.018
  36. 36Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 26002606. 10.1073/pnas.1708274114
  37. 37Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin and Review, 24(4), 12341251. 10.3758/s13423-016-1199-y
  38. 38Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., Friston, K. J., Schofield, T. M., & Leff, A. P. (2010). Comparing families of dynamic causal models. PLoS Computational Biology, 6(3), 1000709. 10.1371/journal.pcbi.1000709
  39. 39Powers, A. R., Mathys, C., & Corlett, P. R. (2017). Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science, 357(6351), 596600. 10.1126/SCIENCE.AAN3458
  40. 40Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 7987. 10.1038/4580
  41. 41Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian model selection for group studies—Revisited. NeuroImage, 84, 971985. 10.1016/j.neuroimage.2013.08.065
  42. 42Rousseeuw, P. J., & Van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), 212223. 10.1080/00401706.1999.10485670
  43. 43Sapey-Triomphe, L.-A., Pattyn, L., Weilnhammer, V., Sterzer, P., & Wagemans, J. (2023). Neural correlates of hierarchical predictive processes in autistic adults. Nature Communications, 14(1), Article 1. 10.1038/s41467-023-38580-9
  44. 44Schad, D. J., Betancourt, M., & Vasishth, S. (2020). Toward a principled Bayesian workflow in cognitive science (arXiv:1904.12765). arXiv. 10.1037/met0000275
  45. 45Schöbi, D., Homberg, F., Frässle, S., Endepols, H., Moran, R. J., Friston, K. J., Tittgemeyer, M., Heinzle, J., & Stephan, K. E. (2021). Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses. NeuroImage, 237, 118096. 10.1016/j.neuroimage.2021.118096
  46. 46Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., Consortium, N. S. P. N., & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLOS Computational Biology, 15(2), e1006803. 10.1371/JOURNAL.PCBI.1006803
  47. 47Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24(111), 647656. 10.1090/S0025-5718-1970-0274029-X
  48. 48Sporn, S., Hein, T., & Herrojo Ruiz, M. (2020). Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety. eLife, 9, e50654. 10.7554/eLife.50654
  49. 49Stephan, K. E., & Mathys, C. (2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 25, 8592. 10.1016/j.conb.2013.12.007
  50. 50Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. NeuroImage, 46(4), 10041017. 10.1016/j.neuroimage.2009.03.025
  51. 51Stephan, K. E., Schlagenhauf, F., Huys, Q. J. M., Raman, S., Aponte, E. A., Brodersen, K. H., Rigoux, L., Moran, R. J., Daunizeau, J., Dolan, R. J., Friston, K. J., & Heinz, A. (2017). Computational neuroimaging strategies for single patient predictions. NeuroImage, 145, 180199. 10.1016/j.neuroimage.2016.06.038
  52. 52Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). Validating Bayesian Inference Algorithms with Simulation-Based Calibration. https://arxiv.org/abs/1804.06788v2
  53. 53Tecilla, M., Großbach, M., Gentile, G., Holland, P., Sporn, S., Antonini, A., & Ruiz, M. H. (2023). Modulation of Motor Vigor by Expectation of Reward Probability Trial-by-Trial Is Preserved in Healthy Ageing and Parkinson’s Disease Patients. Journal of Neuroscience, 43(10), 17571777. 10.1523/JNEUROSCI.1583-22.2022
  54. 54van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., & Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1), 126. 10.1038/s43586-020-00001-2
  55. 55Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 2016 3:1, 3(1), 19. 10.1038/sdata.2016.18
  56. 56Wilson, R. C., & Collins, A. G. E. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8. 10.7554/eLife.49547
DOI: https://doi.org/10.5334/cpsy.116 | Journal eISSN: 2379-6227
Language: English
Submitted on: Feb 26, 2024
Accepted on: Mar 12, 2025
Published on: Mar 25, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Alexander J. Hess, Sandra Iglesias, Laura Köchli, Stephanie Marino, Matthias Müller-Schrader, Lionel Rigoux, Christoph Mathys, Olivia K. Harrison, Jakob Heinzle, Stefan Frässle, Klaas Enno Stephan, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.