References
- 1Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., van Langen, J., & Kievit, R. A. (2021). Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Research, 4, 63. 10.12688/wellcomeopenres.15191.2
- 2Ballard, I. C., & McClure, S. M. (2019). Joint modeling of reaction times and choice improves parameter identifiability in reinforcement learning models. Journal of Neuroscience Methods, 317, 37–44. 10.1016/j.jneumeth.2019.01.006
- 3Betancourt, M. (2020). Towards A Principled Bayesian Workflow.
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html - 4Bonnet, C., & Ars, J. F. (2008). Reaction times as a measure of uncertainty. Psicothema, 20(1), 43–48.
- 5Bröker, F., Marshall, L., Bestmann, S., & Dayan, P. (2018). Forget-me-some: General versus special purpose models in a hierarchical probabilistic task. PLOS ONE, 13(10),
e0205974 . 10.1371/journal.pone.0205974 - 6Broyden, C. G. (1970). The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA Journal of Applied Mathematics, 6(1), 76–90. 10.1093/imamat/6.1.76
- 7Clithero, J. A. (2018). Improving out-of-sample predictions using response times and a model of the decision process. Journal of Economic Behavior & Organization, 148, 344–375. 10.1016/J.JEBO.2018.02.007
- 8Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data. PLoS Computational Biology, 10(1). 10.1371/journal.pcbi.1003441
- 9Daunizeau, J., den Ouden, H. E. M., Pessiglione, M., Kiebel, S. J., Friston, K. J., & Stephan, K. E. (2010a). Observing the observer (II): Deciding when to decide. PLoS ONE, 5(12). 10.1371/journal.pone.0015555
- 10Daunizeau, J., den Ouden, H. E. M., Pessiglione, M., Kiebel, S. J., Stephan, K. E., & Friston, K. J. (2010b). Observing the observer (I): Meta-bayesian models of learning and decision-making. PLoS ONE, 5(12). 10.1371/journal.pone.0015554
- 11den Ouden, H. E. M., Friston, K. J., Daw, N. D., McIntosh, A. R., & Stephan, K. E. (2009). A Dual Role for Prediction Error in Associative Learning. Cerebral Cortex, 19(5), 1175–1185. 10.1093/cercor/bhn161
- 12Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, 13(3), 317–322. 10.1093/comjnl/13.3.317
- 13Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H., Do, C. T., Harrison, O. K., Harrison, S. J., Heinzle, J., Iglesias, S., Kasper, L., Lomakina, E. I., Mathys, C., Müller-Schrader, M., Pereira, I., Petzschner, F. H., Raman, S., Schöbi, D., Toussaint, B., Weber, L. A., … Stephan, K. E. (2021). TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Frontiers in Psychiatry, 12, 857. 10.3389/fpsyt.2021.680811
- 14Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. 10.1098/rstb.2005.1622
- 15Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press. 10.1201/b16018
- 16Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian Workflow. arXiv. 10.48550/arxiv.2011.01808
- 17Gershman, S. J. (2016). Empirical priors for reinforcement learning models. Journal of Mathematical Psychology, 71, 1–6. 10.1016/j.jmp.2016.01.006
- 18Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of Computation, 24(109), 23–26. 10.1090/S0025-5718-1970-0258249-6
- 19Harrison, O. K., Köchli, L., Marino, S., Luechinger, R., Hennel, F., Brand, K., Hess, A. J., Frässle, S., Iglesias, S., Vinckier, F., Petzschner, F. H., Harrison, S. J., & Stephan, K. E. (2021). Interoception of breathing and its relationship with anxiety. Neuron, 1–14. 10.1016/J.NEURON.2021.09.045
- 20Hein, T. P., de Fockert, J., & Ruiz, M. H. (2021). State anxiety biases estimates of uncertainty and impairs reward learning in volatile environments. NeuroImage, 224, 117424. 10.1016/j.neuroimage.2020.117424
- 21Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8(8 JUN), 150. 10.3389/fnins.2014.00150
- 22Iglesias, S., Kasper, L., Harrison, S. J., Manka, R., Mathys, C., & Stephan, K. E. (2021). Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning. NeuroImage, 226, 117590. 10.1016/j.neuroimage.2020.117590
- 23Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E. M., & Stephan, K. E. (2013). Hierarchical Prediction Errors in Midbrain and Basal Forebrain during Sensory Learning. Neuron, 80(2), 519–530. 10.1016/j.neuron.2013.09.009
- 24Kapur, S., Phillips, A. G., & Insel, T. R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it. Molecular Psychiatry, 17(12), 1174–1179. 10.1038/mp.2012.105
- 25Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in psychtoolbox-3?
- 26Kraemer, P. M., Fontanesi, L., Spektor, M. S., & Gluth, S. (2021). Response time models separate single- and dual-process accounts of memory-based decisions. Psychonomic Bulletin and Review, 28(1), 304–323. 10.3758/s13423-020-01794-9
- 27Lawson, R. P., Bisby, J., Nord, C. L., Burgess, N., & Rees, G. (2021). The Computational, Pharmacological, and Physiological Determinants of Sensory Learning under Uncertainty. Current Biology, 31(1), 163–172.e4. 10.1016/J.CUB.2020.10.043
- 28Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 1293–1299. 10.1038/nn.4615
- 29Loeys, T., Rosseel, Y., & Baten, K. (2011). A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments. Psychometrika 2011 76:3, 76(3), 487–503. 10.1007/S11336-011-9211-Y
- 30Marshall, L., Mathys, C., Ruge, D., de Berker, A. O., Dayan, P., Stephan, K. E., & Bestmann, S. (2016). Pharmacological Fingerprints of Contextual Uncertainty. PLOS Biology, 14(11),
e1002575 . 10.1371/journal.pbio.1002575 - 31Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5(May), 1–20. 10.3389/fnhum.2011.00039
- 32Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 8(November), 1–24. 10.3389/fnhum.2014.00825
- 33McDougle, S. D., & Collins, A. G. E. (2021). Modeling the influence of working memory, reinforcement, and action uncertainty on reaction time and choice during instrumental learning. Psychonomic Bulletin and Review, 28(1), 20–39. 10.3758/s13423-020-01774-z
- 34Miletić, S., Boag, R. J., Trutti, A. C., Stevenson, N., Forstmann, B. U., & Heathcote, A. (2021). A new model of decision processing in instrumental learning tasks. eLife, 10, 1–55. 10.7554/ELIFE.63055
- 35Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72. 10.1016/J.TICS.2011.11.018
- 36Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 2600–2606. 10.1073/pnas.1708274114
- 37Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin and Review, 24(4), 1234–1251. 10.3758/s13423-016-1199-y
- 38Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., Friston, K. J., Schofield, T. M., & Leff, A. P. (2010). Comparing families of dynamic causal models. PLoS Computational Biology, 6(3), 1000709. 10.1371/journal.pcbi.1000709
- 39Powers, A. R., Mathys, C., & Corlett, P. R. (2017). Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science, 357(6351), 596–600. 10.1126/SCIENCE.AAN3458
- 40Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. 10.1038/4580
- 41Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian model selection for group studies—Revisited. NeuroImage, 84, 971–985. 10.1016/j.neuroimage.2013.08.065
- 42Rousseeuw, P. J., & Van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), 212–223. 10.1080/00401706.1999.10485670
- 43Sapey-Triomphe, L.-A., Pattyn, L., Weilnhammer, V., Sterzer, P., & Wagemans, J. (2023). Neural correlates of hierarchical predictive processes in autistic adults. Nature Communications, 14(1), Article 1. 10.1038/s41467-023-38580-9
- 44Schad, D. J., Betancourt, M., & Vasishth, S. (2020). Toward a principled Bayesian workflow in cognitive science (
arXiv:1904.12765 ). arXiv. 10.1037/met0000275 - 45Schöbi, D., Homberg, F., Frässle, S., Endepols, H., Moran, R. J., Friston, K. J., Tittgemeyer, M., Heinzle, J., & Stephan, K. E. (2021). Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses. NeuroImage, 237, 118096. 10.1016/j.neuroimage.2021.118096
- 46Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., Consortium, N. S. P. N., & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLOS Computational Biology, 15(2),
e1006803 . 10.1371/JOURNAL.PCBI.1006803 - 47Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24(111), 647–656. 10.1090/S0025-5718-1970-0274029-X
- 48Sporn, S., Hein, T., & Herrojo Ruiz, M. (2020). Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety. eLife, 9,
e50654 . 10.7554/eLife.50654 - 49Stephan, K. E., & Mathys, C. (2014). Computational approaches to psychiatry. Current Opinion in Neurobiology, 25, 85–92. 10.1016/j.conb.2013.12.007
- 50Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. NeuroImage, 46(4), 1004–1017. 10.1016/j.neuroimage.2009.03.025
- 51Stephan, K. E., Schlagenhauf, F., Huys, Q. J. M., Raman, S., Aponte, E. A., Brodersen, K. H., Rigoux, L., Moran, R. J., Daunizeau, J., Dolan, R. J., Friston, K. J., & Heinz, A. (2017). Computational neuroimaging strategies for single patient predictions. NeuroImage, 145, 180–199. 10.1016/j.neuroimage.2016.06.038
- 52Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). Validating Bayesian Inference Algorithms with Simulation-Based Calibration.
https://arxiv.org/abs/1804.06788v2 - 53Tecilla, M., Großbach, M., Gentile, G., Holland, P., Sporn, S., Antonini, A., & Ruiz, M. H. (2023). Modulation of Motor Vigor by Expectation of Reward Probability Trial-by-Trial Is Preserved in Healthy Ageing and Parkinson’s Disease Patients. Journal of Neuroscience, 43(10), 1757–1777. 10.1523/JNEUROSCI.1583-22.2022
- 54van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., Willemsen, J., & Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1), 1–26. 10.1038/s43586-020-00001-2
- 55Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 2016 3:1, 3(1), 1–9. 10.1038/sdata.2016.18
- 56Wilson, R. C., & Collins, A. G. E. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8. 10.7554/eLife.49547
