References
- 1Alessi, S. M., & Petry, N. M. (2003). Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behavioural Processes, 64(3), 345–354. DOI: 10.1016/S0376-6357(03)00150-5
- 2Alvarez-Moya, E. M., Jiménez-Murcia, S., Aymamí, M. N., Gómez-Peña, M., Granero, R., Santamaría, J., Menchón, J. M., & Fernández-Aranda, F. (2010). Subtyping study of a pathological gamblers sample. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 55(8), 498–506. DOI: 10.1177/070674371005500804
- 3Anselme, P., Robinson, M. J. F., & Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 238, 53–61. DOI: 10.1016/j.bbr.2012.10.006
- 4Ballard, I. C., & McClure, S. M. (2019). Joint modeling of reaction times and choice improves parameter identifiability in reinforcement learning models. Journal of Neuroscience Methods, 317, 37–44. DOI: 10.1016/j.jneumeth.2019.01.006
- 5Balodis, I. M., Kober, H., Worhunsky, P. D., Stevens, M. C., Pearlson, G. D., & Potenza, M. N. (2012). Attending to striatal ups and downs in addictions. Biol Psychiatry, 72, e25–6. DOI: 10.1016/j.biopsych.2012.06.016
- 6Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. DOI: 10.1016/j.neuroimage.2013.02.063
- 7Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. Psychological Corporation. DOI: 10.1037/t00742-000
- 8Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction (Abingdon, England), 97(5), 487–499. DOI: 10.1046/j.1360-0443.2002.00015.x
- 9Boog, M., Höppener, P., Wetering, B. J. M. V. D., Goudriaan, A. E., Boog, M. C., & Franken, I. H. A. (2014). Cognitive Inflexibility in Gamblers is Primarily Present in Reward-Related Decision Making. Frontiers in Human Neuroscience, 8,
569 . DOI: 10.3389/fnhum.2014.00569 - 10Bruder, L. R., Wagner, B., Mathar, D., & Peters, J. (2021). Increased temporal discounting and reduced model-based control in problem gambling are not substantially modulated by exposure to virtual gambling environments. bioRxiv, 2021.09.16.459889. DOI: 10.1101/2021.09.16.459889
- 11Chakroun, K., Wiehler, A., Wagner, B., Mathar, D., Ganzer, F., van Eimeren, T., Sommer, T., & Peters, J. (2023). Dopamine regulates decision thresholds in human reinforcement learning in males. Nature Communications, 14(1),
5369 . DOI: 10.1038/s41467-023-41130-y - 12Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J Neurosci, 29, 12315–12320. DOI: 10.1523/JNEUROSCI.2575-09.2009
- 13Chowdhury, N. S., Livesey, E. J., Blaszczynski, A., & Harris, J. A. (2017). Pathological Gambling and Motor Impulsivity: A Systematic Review with Meta-Analysis. Journal of Gambling Studies, 33(4), 1213–1239. DOI: 10.1007/s10899-017-9683-5
- 14Clark, L., Boileau, I., & Zack, M. (2019). Neuroimaging of reward mechanisms in Gambling disorder: An integrative review. Molecular Psychiatry, 24(5), 674–693. DOI: 10.1038/s41380-018-0230-2
- 15Clithero, J. A., & Rangel, A. (2014). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience, 9(9), 1289–1302. DOI: 10.1093/scan/nst106
- 16Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879. DOI: 10.1038/nature04766
- 17de Ruiter, M. B., Veltman, D. J., Goudriaan, A. E., Oosterlaan, J., Sjoerds, Z., & van den Brink, W. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology, 34, 1027–1038. DOI: 10.1038/npp.2008.175
- 18Deichmann, R., Gottfried, J. A., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage, 19(2 Pt 1), 430–441. DOI: 10.1016/S1053-8119(03)00073-9
- 19Dixon, M. R., Marley, J., & Jacobs, E. A. (2003). Delay discounting by pathological gamblers. J Appl Behav Anal, 36, 449–458. DOI: 10.1901/jaba.2003.36-449
- 20Dowling, N. A., Merkouris, S. S., Greenwood, C. J., Oldenhof, E., Toumbourou, J. W., & Youssef, G. J. (2017). Early risk and protective factors for problem gambling: A systematic review and meta-analysis of longitudinal studies. Clinical Psychology Review, 51, 109–124. DOI: 10.1016/j.cpr.2016.10.008
- 21Fauth-Bühler, M., Mann, K., & Potenza, M. N. (2017). Pathological gambling: A review of the neurobiological evidence relevant for its classification as an addictive disorder. Addiction Biology, 22(4), 885–897. DOI: 10.1111/adb.12378
- 22Fauth-Bühler, M., Zois, E., Vollstädt-Klein, S., Lemenager, T., Beutel, M., & Mann, K. (2014). Insula and striatum activity in effort-related monetary reward processing in gambling disorder: The role of depressive symptomatology. NeuroImage. Clinical, 6, 243–251. DOI: 10.1016/j.nicl.2014.09.008
- 23Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898–1902. DOI: 10.1126/science.1077349
- 24Fontanesi, L., Gluth, S., Spektor, M. S., & Rieskamp, J. (2019). A reinforcement learning diffusion decision model for value-based decisions. Psychonomic Bulletin & Review, 26(4), 1099–1121. DOI: 10.3758/s13423-018-1554-2
- 25Fontanesi, L., Palminteri, S., & Lebreton, M. (2019). Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: A meta-analytical approach using diffusion decision modeling. Cognitive, Affective & Behavioral Neuroscience, 19(3), 490–502. DOI: 10.3758/s13415-019-00723-1
- 26Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions. Annual Review of Psychology, 67, 641–666. DOI: 10.1146/annurev-psych-122414-033645
- 27Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943. DOI: 10.1126/science.1102941
- 28Fröhner, J. H., Teckentrup, V., Smolka, M. N., & Kroemer, N. B. (2019). Addressing the reliability fallacy in fMRI: Similar group effects may arise from unreliable individual effects. NeuroImage, 195, 174–189. DOI: 10.1016/j.neuroimage.2019.03.053
- 29Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res, 23, 137–151. DOI: 10.1016/j.cogbrainres.2005.01.017
- 30Hales, C. A., Clark, L., & Winstanley, C. A. (2023). Computational approaches to modeling gambling behaviour: Opportunities for understanding disordered gambling. Neuroscience and Biobehavioral Reviews, 147,
105083 . DOI: 10.1016/j.neubiorev.2023.105083 - 31Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addictions, 86, 1119–1127. DOI: 10.1111/j.1360-0443.1991.tb01879.x
- 32Hing, N., Russell, A., Tolchard, B., & Nower, L. (2016). Risk Factors for Gambling Problems: An Analysis by Gender. Journal of Gambling Studies, 32(2), 511–534. DOI: 10.1007/s10899-015-9548-8
- 33Holt, D. D., Green, L., & Myerson, J. (2003). Is discounting impulsive? Evidence from temporal and probability discounting in gambling and non-gambling college students. Behav Processes, 64, 355–367. DOI: 10.1016/S0376-6357(03)00141-4
- 34Hur, J.-W., Shin, N. Y., Kim, S. N., Jang, J. H., Choi, J.-S., Shin, Y.-C., & Kwon, J. S. (2012). Do pathological gambling and obsessive-compulsive disorder overlap? A neurocognitive perspective. CNS Spectrums, 17(4), 207–213. DOI: 10.1017/S1092852912000545
- 35Kapsomenakis, A., Simos, P. G., Konstantakopoulos, G., & Kasselimis, D. S. (2018). In Search of Executive Impairment in Pathological Gambling: A Neuropsychological Study on Non-treatment Seeking Gamblers. Journal of Gambling Studies, 34(4), 1327–1340. DOI: 10.1007/s10899-018-9758-y
- 36Kim, H. S., Ritchie, E. V., Sears, C. R., Hodgins, D. C., Kowatch, K. R., & McGrath, D. S. (2022). Affective impulsivity moderates the relationship between disordered gambling severity and attentional bias in electronic gaming machine (EGM) players. Journal of Behavioral Addictions, 11(2), 386–395. DOI: 10.1556/2006.2022.00043
- 37Kräplin, A., Dshemuchadse, M., Behrendt, S., Scherbaum, S., Goschke, T., & Bühringer, G. (2014). Dysfunctional decision-making in pathological gambling: Pattern specificity and the role of impulsivity. Psychiatry Research, 215(3), 675–682. DOI: 10.1016/j.psychres.2013.12.041
- 38Kruschke, J. (2015). Doing Bayesian Data Analysis (Second Edition). Academic Press.
- 39Lebreton, M., Bavard, S., Daunizeau, J., & Palminteri, S. (2019). Assessing inter-individual differences with task-related functional neuroimaging. Nature Human Behaviour, 3(9), 897–905. DOI: 10.1038/s41562-019-0681-8
- 40Ledgerwood, D. M., Orr, E. S., Kaploun, K. A., Milosevic, A., Frisch, G. R., Rupcich, N., & Lundahl, L. H. (2012). Executive function in pathological gamblers and healthy controls. Journal of Gambling Studies, 28(1), 89–103. DOI: 10.1007/s10899-010-9237-6
- 41Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. Am J Psychiatry, 144, 1184–1188. DOI: 10.1176/ajp.144.9.1184
- 42Leyton, M., & Vezina, P. (2012). On cue: Striatal ups and downs in addictions. Biol Psychiatry, 72, e21–2. DOI: 10.1016/j.biopsych.2012.04.036
- 43Leyton, M., & Vezina, P. (2013). Striatal ups and downs: Their roles in vulnerability to addictions in humans. Neuroscience & Biobehavioral Reviews, 37(9), 1999–2014. DOI: 10.1016/j.neubiorev.2013.01.018
- 44Ligneul, R., Sescousse, G., Barbalat, G., Domenech, P., & Dreher, J. C. (2012). Shifted risk preferences in pathological gambling. Psychol Med, 1–10. DOI: 10.1017/S0033291712001900
- 45Linnet, J., Mouridsen, K., Peterson, E., Møller, A., Doudet, D. J., & Gjedde, A. (2012). Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Research, 204(1), 55–60. DOI: 10.1016/j.pscychresns.2012.04.012
- 46MacKillop, J., Amlung, M. T., Few, L. R., Ray, L. A., Sweet, L. H., & Munafò, M. R. (2011). Delayed reward discounting and addictive behavior: A meta-analysis. Psychopharmacology, 216(3), 305–321. DOI: 10.1007/s00213-011-2229-0
- 47Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154–162. DOI: 10.1038/nn.2723
- 48Mathar, D., Erfanian Abdoust, M., Marrenbach, T., Tuzsus, D., & Peters, J. (2022). The catecholamine precursor Tyrosine reduces autonomic arousal and decreases decision thresholds in reinforcement learning and temporal discounting. PLoS Computational Biology, 18(12),
e1010785 . DOI: 10.1371/journal.pcbi.1010785 - 49Miedl, S. F., Buchel, C., & Peters, J. (2014). Cue-Induced Craving Increases Impulsivity via Changes in Striatal Value Signals in Problem Gamblers. Journal of Neuroscience, 34(13), 4750–4755. DOI: 10.1523/JNEUROSCI.5020-13.2014
- 50Miedl, S. F., Peters, J., & Büchel, C. (2012). Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Archives of General Psychiatry, 69(2), 177–186. DOI: 10.1001/archgenpsychiatry.2011.1552
- 51Miletić, S., Boag, R. J., & Forstmann, B. U. (2020). Mutual benefits: Combining reinforcement learning with sequential sampling models. Neuropsychologia, 136,
107261 . DOI: 10.1016/j.neuropsychologia.2019.107261 - 52Milosevic, A., & Ledgerwood, D. M. (2010). The subtyping of pathological gambling: A comprehensive review. Clinical Psychology Review, 30(8), 988–998. DOI: 10.1016/j.cpr.2010.06.013
- 53Mukherjee, D., van Geen, C., & Kable, J. (2023). Leveraging Decision Science to Characterize Depression. Current Directions in Psychological Science, 32(6), 462–470. DOI: 10.1177/09637214231194962
- 54Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin & Review, 24(4), 1234–1251. DOI: 10.3758/s13423-016-1199-y
- 55Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 1042–1045. DOI: 10.1038/nature05051
- 56Peters, J., & D’Esposito, M. (2020). The drift diffusion model as the choice rule in inter-temporal and risky choice: A case study in medial orbitofrontal cortex lesion patients and controls. PLOS Computational Biology, 16(4),
e1007615 . DOI: 10.1371/journal.pcbi.1007615 - 57Peters, J., Vega, T., Weinstein, D., Mitchell, J., & Kayser, A. (2020). Dopamine and risky decision-making in gambling disorder. eNeuro. DOI: 10.1523/ENEURO.0461-19.2020
- 58Petry, J. (1996). Psychotherapie der Glücksspielsucht. Beltz/Psychologie Verlags Union.
- 59Pike, A. C., & Robinson, O. J. (2022). Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiatry, 79(4), 313–322. DOI: 10.1001/jamapsychiatry.2022.0051
- 60Plassmann, H., O’Doherty, J., & Rangel, A. (2007). Orbitofrontal Cortex Encodes Willingness to Pay in Everyday Economic Transactions. Journal of Neuroscience, 27(37), 9984–9988. DOI: 10.1523/JNEUROSCI.2131-07.2007
- 61Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd international workshop on distributed statistical computing, 124,
125 .http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf - 62Potenza, M. N. (2013). Neurobiology of gambling behaviors. Current Opinion in Neurobiology, 23(4), 660–667. DOI: 10.1016/j.conb.2013.03.004
- 63Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–390. DOI: 10.1016/j.neuron.2006.06.024
- 64Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural computation, 20(4), 873–922. DOI: 10.1162/neco.2008.12-06-420
- 65Robinson, M. J. F., Anselme, P., Fischer, A. M., & Berridge, K. C. (2014). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119–130. DOI: 10.1016/j.bbr.2014.03.004
- 66Robinson, M. J. F., Anselme, P., Suchomel, K., & Berridge, K. C. (2015). Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behavioral Neuroscience, 129(4), 502–511. DOI: 10.1037/bne0000064
- 67Robinson, M. J. F., Fischer, A. M., Ahuja, A., Lesser, E. N., & Maniates, H. (2016). Roles of “Wanting” and “Liking” in Motivating Behavior: Gambling, Food, and Drug Addictions. Current Topics in Behavioral Neurosciences, 27, 105–136. DOI: 10.1007/7854_2015_387
- 68Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247–291. DOI: 10.1016/0165-0173(93)90013-P
- 69Saunders, J. B., Aasland, O. G., Babor, T. F., de la Fuente, J. R., & Grant, M. (1993). Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption—II. Addiction, 88, 791–804. DOI: 10.1111/j.1360-0443.1993.tb02093.x
- 70Schulz, E., & Gershman, S. J. (2019). The algorithmic architecture of exploration in the human brain. Current Opinion in Neurobiology, 55, 7–14. DOI: 10.1016/j.conb.2018.11.003
- 71Sescousse, G., Barbalat, G., Domenech, P., & Dreher, J.-C. (2013). Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain, 136(8), 2527–2538. DOI: 10.1093/brain/awt126
- 72Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., NSPN consortium, & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLoS Computational Biology, 15(2),
e1006803 . DOI: 10.1371/journal.pcbi.1006803 - 73Shao, R., Read, J., Behrens, T. E. J., & Rogers, R. D. (2013). Shifts in reinforcement signalling while playing slot-machines as a function of prior experience and impulsivity. Translational Psychiatry, 3(2),
e235 . DOI: 10.1038/tp.2013.10 - 74Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, 2nd ed (S. xxii, 526). The MIT Press.
- 75van Holst, R. J., Sescousse, G., Janssen, L. K., Janssen, M., Berry, A. S., Jagust, W. J., & Cools, R. (2018). Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction. Biological Psychiatry, 83(12), 1036–1043. DOI: 10.1016/j.biopsych.2017.06.010
- 76van Holst, R. J., Veltman, D. J., Büchel, C., van den Brink, W., & Goudriaan, A. E. (2012). Distorted Expectancy Coding in Problem Gambling: Is the Addictive in the Anticipation? Biological Psychiatry, 71(8), 741–748. DOI: 10.1016/j.biopsych.2011.12.030
- 77van Holst, R. J., Veltman, D. J., van den Brink, W., & Goudriaan, A. E. (2012). Right on cue? Striatal reactivity in problem gamblers. Biol Psychiatry, 72, e23–4. DOI: 10.1016/j.biopsych.2012.06.017
- 78van Timmeren, T., Daams, J. G., van Holst, R. J., & Goudriaan, A. E. (2018). Compulsivity-related neurocognitive performance deficits in gambling disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 204–217. DOI: 10.1016/j.neubiorev.2017.11.022
- 79Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. DOI: 10.1007/s11222-016-9696-4
- 80Wabersich, D., & Vandekerckhove, J. (2014). Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example). Behavior Research Methods, 46(1), 15–28. DOI: 10.3758/s13428-013-0369-3
- 81Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Šmíra, M., Epskamp, S., Etz, A., Matzke, D., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76. DOI: 10.3758/s13423-017-1323-7
- 82Wagner, B., Clos, M., Sommer, T., & Peters, J. (2020). Dopaminergic Modulation of Human Intertemporal Choice: A Diffusion Model Analysis Using the D2-Receptor Antagonist Haloperidol. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(41), 7936–7948. DOI: 10.1523/JNEUROSCI.0592-20.2020
- 83Wiehler, A., Chakroun, K., & Peters, J. (2021). Attenuated Directed Exploration during Reinforcement Learning in Gambling Disorder. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 41(11), 2512–2522. DOI: 10.1523/JNEUROSCI.1607-20.2021
- 84Wiehler, A., & Peters, J. (2015). Reward-based decision making in pathological gambling: The roles of risk and delay. Neuroscience Research, 90, 3–14. DOI: 10.1016/j.neures.2014.09.008
- 85Wilson, R. C., Bonawitz, E., Costa, V. D., & Ebitz, R. B. (2021). Balancing exploration and exploitation with information and randomization. Current Opinion in Behavioral Sciences, 38, 49–56. DOI: 10.1016/j.cobeha.2020.10.001
- 86Wyckmans, F., Otto, A. R., Sebold, M., Daw, N., Bechara, A., Saeremans, M., Kornreich, C., Chatard, A., Jaafari, N., & Noël, X. (2019). Reduced model-based decision-making in gambling disorder. Scientific Reports, 9(1),
19625 . DOI: 10.1038/s41598-019-56161-z - 87Zack, M., Featherstone, R. E., Mathewson, S., & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Frontiers in Behavioral Neuroscience, 8,
36 . DOI: 10.3389/fnbeh.2014.00036 - 88Zhou, Z., Zhou, H., & Zhu, H. (2016). Working memory, executive function and impulsivity in Internet-addictive disorders: A comparison with pathological gambling. Acta Neuropsychiatrica, 28(2), 92–100. DOI: 10.1017/neu.2015.54
