Have a personal or library account? Click to login
Decomposition of Reinforcement Learning Deficits in Disordered Gambling via Drift Diffusion Modeling and Functional Magnetic Resonance Imaging Cover

Decomposition of Reinforcement Learning Deficits in Disordered Gambling via Drift Diffusion Modeling and Functional Magnetic Resonance Imaging

By: Antonius Wiehler and  Jan Peters  
Open Access
|Mar 2024

References

  1. 1Alessi, S. M., & Petry, N. M. (2003). Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behavioural Processes, 64(3), 345354. DOI: 10.1016/S0376-6357(03)00150-5
  2. 2Alvarez-Moya, E. M., Jiménez-Murcia, S., Aymamí, M. N., Gómez-Peña, M., Granero, R., Santamaría, J., Menchón, J. M., & Fernández-Aranda, F. (2010). Subtyping study of a pathological gamblers sample. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 55(8), 498506. DOI: 10.1177/070674371005500804
  3. 3Anselme, P., Robinson, M. J. F., & Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 238, 5361. DOI: 10.1016/j.bbr.2012.10.006
  4. 4Ballard, I. C., & McClure, S. M. (2019). Joint modeling of reaction times and choice improves parameter identifiability in reinforcement learning models. Journal of Neuroscience Methods, 317, 3744. DOI: 10.1016/j.jneumeth.2019.01.006
  5. 5Balodis, I. M., Kober, H., Worhunsky, P. D., Stevens, M. C., Pearlson, G. D., & Potenza, M. N. (2012). Attending to striatal ups and downs in addictions. Biol Psychiatry, 72, e256. DOI: 10.1016/j.biopsych.2012.06.016
  6. 6Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412427. DOI: 10.1016/j.neuroimage.2013.02.063
  7. 7Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. Psychological Corporation. DOI: 10.1037/t00742-000
  8. 8Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction (Abingdon, England), 97(5), 487499. DOI: 10.1046/j.1360-0443.2002.00015.x
  9. 9Boog, M., Höppener, P., Wetering, B. J. M. V. D., Goudriaan, A. E., Boog, M. C., & Franken, I. H. A. (2014). Cognitive Inflexibility in Gamblers is Primarily Present in Reward-Related Decision Making. Frontiers in Human Neuroscience, 8, 569. DOI: 10.3389/fnhum.2014.00569
  10. 10Bruder, L. R., Wagner, B., Mathar, D., & Peters, J. (2021). Increased temporal discounting and reduced model-based control in problem gambling are not substantially modulated by exposure to virtual gambling environments. bioRxiv, 2021.09.16.459889. DOI: 10.1101/2021.09.16.459889
  11. 11Chakroun, K., Wiehler, A., Wagner, B., Mathar, D., Ganzer, F., van Eimeren, T., Sommer, T., & Peters, J. (2023). Dopamine regulates decision thresholds in human reinforcement learning in males. Nature Communications, 14(1), 5369. DOI: 10.1038/s41467-023-41130-y
  12. 12Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J Neurosci, 29, 1231512320. DOI: 10.1523/JNEUROSCI.2575-09.2009
  13. 13Chowdhury, N. S., Livesey, E. J., Blaszczynski, A., & Harris, J. A. (2017). Pathological Gambling and Motor Impulsivity: A Systematic Review with Meta-Analysis. Journal of Gambling Studies, 33(4), 12131239. DOI: 10.1007/s10899-017-9683-5
  14. 14Clark, L., Boileau, I., & Zack, M. (2019). Neuroimaging of reward mechanisms in Gambling disorder: An integrative review. Molecular Psychiatry, 24(5), 674693. DOI: 10.1038/s41380-018-0230-2
  15. 15Clithero, J. A., & Rangel, A. (2014). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience, 9(9), 12891302. DOI: 10.1093/scan/nst106
  16. 16Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876879. DOI: 10.1038/nature04766
  17. 17de Ruiter, M. B., Veltman, D. J., Goudriaan, A. E., Oosterlaan, J., Sjoerds, Z., & van den Brink, W. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology, 34, 10271038. DOI: 10.1038/npp.2008.175
  18. 18Deichmann, R., Gottfried, J. A., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage, 19(2 Pt 1), 430441. DOI: 10.1016/S1053-8119(03)00073-9
  19. 19Dixon, M. R., Marley, J., & Jacobs, E. A. (2003). Delay discounting by pathological gamblers. J Appl Behav Anal, 36, 449458. DOI: 10.1901/jaba.2003.36-449
  20. 20Dowling, N. A., Merkouris, S. S., Greenwood, C. J., Oldenhof, E., Toumbourou, J. W., & Youssef, G. J. (2017). Early risk and protective factors for problem gambling: A systematic review and meta-analysis of longitudinal studies. Clinical Psychology Review, 51, 109124. DOI: 10.1016/j.cpr.2016.10.008
  21. 21Fauth-Bühler, M., Mann, K., & Potenza, M. N. (2017). Pathological gambling: A review of the neurobiological evidence relevant for its classification as an addictive disorder. Addiction Biology, 22(4), 885897. DOI: 10.1111/adb.12378
  22. 22Fauth-Bühler, M., Zois, E., Vollstädt-Klein, S., Lemenager, T., Beutel, M., & Mann, K. (2014). Insula and striatum activity in effort-related monetary reward processing in gambling disorder: The role of depressive symptomatology. NeuroImage. Clinical, 6, 243251. DOI: 10.1016/j.nicl.2014.09.008
  23. 23Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 18981902. DOI: 10.1126/science.1077349
  24. 24Fontanesi, L., Gluth, S., Spektor, M. S., & Rieskamp, J. (2019). A reinforcement learning diffusion decision model for value-based decisions. Psychonomic Bulletin & Review, 26(4), 10991121. DOI: 10.3758/s13423-018-1554-2
  25. 25Fontanesi, L., Palminteri, S., & Lebreton, M. (2019). Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: A meta-analytical approach using diffusion decision modeling. Cognitive, Affective & Behavioral Neuroscience, 19(3), 490502. DOI: 10.3758/s13415-019-00723-1
  26. 26Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions. Annual Review of Psychology, 67, 641666. DOI: 10.1146/annurev-psych-122414-033645
  27. 27Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306, 19401943. DOI: 10.1126/science.1102941
  28. 28Fröhner, J. H., Teckentrup, V., Smolka, M. N., & Kroemer, N. B. (2019). Addressing the reliability fallacy in fMRI: Similar group effects may arise from unreliable individual effects. NeuroImage, 195, 174189. DOI: 10.1016/j.neuroimage.2019.03.053
  29. 29Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res, 23, 137151. DOI: 10.1016/j.cogbrainres.2005.01.017
  30. 30Hales, C. A., Clark, L., & Winstanley, C. A. (2023). Computational approaches to modeling gambling behaviour: Opportunities for understanding disordered gambling. Neuroscience and Biobehavioral Reviews, 147, 105083. DOI: 10.1016/j.neubiorev.2023.105083
  31. 31Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addictions, 86, 11191127. DOI: 10.1111/j.1360-0443.1991.tb01879.x
  32. 32Hing, N., Russell, A., Tolchard, B., & Nower, L. (2016). Risk Factors for Gambling Problems: An Analysis by Gender. Journal of Gambling Studies, 32(2), 511534. DOI: 10.1007/s10899-015-9548-8
  33. 33Holt, D. D., Green, L., & Myerson, J. (2003). Is discounting impulsive? Evidence from temporal and probability discounting in gambling and non-gambling college students. Behav Processes, 64, 355367. DOI: 10.1016/S0376-6357(03)00141-4
  34. 34Hur, J.-W., Shin, N. Y., Kim, S. N., Jang, J. H., Choi, J.-S., Shin, Y.-C., & Kwon, J. S. (2012). Do pathological gambling and obsessive-compulsive disorder overlap? A neurocognitive perspective. CNS Spectrums, 17(4), 207213. DOI: 10.1017/S1092852912000545
  35. 35Kapsomenakis, A., Simos, P. G., Konstantakopoulos, G., & Kasselimis, D. S. (2018). In Search of Executive Impairment in Pathological Gambling: A Neuropsychological Study on Non-treatment Seeking Gamblers. Journal of Gambling Studies, 34(4), 13271340. DOI: 10.1007/s10899-018-9758-y
  36. 36Kim, H. S., Ritchie, E. V., Sears, C. R., Hodgins, D. C., Kowatch, K. R., & McGrath, D. S. (2022). Affective impulsivity moderates the relationship between disordered gambling severity and attentional bias in electronic gaming machine (EGM) players. Journal of Behavioral Addictions, 11(2), 386395. DOI: 10.1556/2006.2022.00043
  37. 37Kräplin, A., Dshemuchadse, M., Behrendt, S., Scherbaum, S., Goschke, T., & Bühringer, G. (2014). Dysfunctional decision-making in pathological gambling: Pattern specificity and the role of impulsivity. Psychiatry Research, 215(3), 675682. DOI: 10.1016/j.psychres.2013.12.041
  38. 38Kruschke, J. (2015). Doing Bayesian Data Analysis (Second Edition). Academic Press.
  39. 39Lebreton, M., Bavard, S., Daunizeau, J., & Palminteri, S. (2019). Assessing inter-individual differences with task-related functional neuroimaging. Nature Human Behaviour, 3(9), 897905. DOI: 10.1038/s41562-019-0681-8
  40. 40Ledgerwood, D. M., Orr, E. S., Kaploun, K. A., Milosevic, A., Frisch, G. R., Rupcich, N., & Lundahl, L. H. (2012). Executive function in pathological gamblers and healthy controls. Journal of Gambling Studies, 28(1), 89103. DOI: 10.1007/s10899-010-9237-6
  41. 41Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. Am J Psychiatry, 144, 11841188. DOI: 10.1176/ajp.144.9.1184
  42. 42Leyton, M., & Vezina, P. (2012). On cue: Striatal ups and downs in addictions. Biol Psychiatry, 72, e212. DOI: 10.1016/j.biopsych.2012.04.036
  43. 43Leyton, M., & Vezina, P. (2013). Striatal ups and downs: Their roles in vulnerability to addictions in humans. Neuroscience & Biobehavioral Reviews, 37(9), 19992014. DOI: 10.1016/j.neubiorev.2013.01.018
  44. 44Ligneul, R., Sescousse, G., Barbalat, G., Domenech, P., & Dreher, J. C. (2012). Shifted risk preferences in pathological gambling. Psychol Med, 110. DOI: 10.1017/S0033291712001900
  45. 45Linnet, J., Mouridsen, K., Peterson, E., Møller, A., Doudet, D. J., & Gjedde, A. (2012). Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Research, 204(1), 5560. DOI: 10.1016/j.pscychresns.2012.04.012
  46. 46MacKillop, J., Amlung, M. T., Few, L. R., Ray, L. A., Sweet, L. H., & Munafò, M. R. (2011). Delayed reward discounting and addictive behavior: A meta-analysis. Psychopharmacology, 216(3), 305321. DOI: 10.1007/s00213-011-2229-0
  47. 47Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154162. DOI: 10.1038/nn.2723
  48. 48Mathar, D., Erfanian Abdoust, M., Marrenbach, T., Tuzsus, D., & Peters, J. (2022). The catecholamine precursor Tyrosine reduces autonomic arousal and decreases decision thresholds in reinforcement learning and temporal discounting. PLoS Computational Biology, 18(12), e1010785. DOI: 10.1371/journal.pcbi.1010785
  49. 49Miedl, S. F., Buchel, C., & Peters, J. (2014). Cue-Induced Craving Increases Impulsivity via Changes in Striatal Value Signals in Problem Gamblers. Journal of Neuroscience, 34(13), 47504755. DOI: 10.1523/JNEUROSCI.5020-13.2014
  50. 50Miedl, S. F., Peters, J., & Büchel, C. (2012). Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Archives of General Psychiatry, 69(2), 177186. DOI: 10.1001/archgenpsychiatry.2011.1552
  51. 51Miletić, S., Boag, R. J., & Forstmann, B. U. (2020). Mutual benefits: Combining reinforcement learning with sequential sampling models. Neuropsychologia, 136, 107261. DOI: 10.1016/j.neuropsychologia.2019.107261
  52. 52Milosevic, A., & Ledgerwood, D. M. (2010). The subtyping of pathological gambling: A comprehensive review. Clinical Psychology Review, 30(8), 988998. DOI: 10.1016/j.cpr.2010.06.013
  53. 53Mukherjee, D., van Geen, C., & Kable, J. (2023). Leveraging Decision Science to Characterize Depression. Current Directions in Psychological Science, 32(6), 462470. DOI: 10.1177/09637214231194962
  54. 54Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin & Review, 24(4), 12341251. DOI: 10.3758/s13423-016-1199-y
  55. 55Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 10421045. DOI: 10.1038/nature05051
  56. 56Peters, J., & D’Esposito, M. (2020). The drift diffusion model as the choice rule in inter-temporal and risky choice: A case study in medial orbitofrontal cortex lesion patients and controls. PLOS Computational Biology, 16(4), e1007615. DOI: 10.1371/journal.pcbi.1007615
  57. 57Peters, J., Vega, T., Weinstein, D., Mitchell, J., & Kayser, A. (2020). Dopamine and risky decision-making in gambling disorder. eNeuro. DOI: 10.1523/ENEURO.0461-19.2020
  58. 58Petry, J. (1996). Psychotherapie der Glücksspielsucht. Beltz/Psychologie Verlags Union.
  59. 59Pike, A. C., & Robinson, O. J. (2022). Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiatry, 79(4), 313322. DOI: 10.1001/jamapsychiatry.2022.0051
  60. 60Plassmann, H., O’Doherty, J., & Rangel, A. (2007). Orbitofrontal Cortex Encodes Willingness to Pay in Everyday Economic Transactions. Journal of Neuroscience, 27(37), 99849988. DOI: 10.1523/JNEUROSCI.2131-07.2007
  61. 61Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd international workshop on distributed statistical computing, 124, 125. http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf
  62. 62Potenza, M. N. (2013). Neurobiology of gambling behaviors. Current Opinion in Neurobiology, 23(4), 660667. DOI: 10.1016/j.conb.2013.03.004
  63. 63Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381390. DOI: 10.1016/j.neuron.2006.06.024
  64. 64Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural computation, 20(4), 873922. DOI: 10.1162/neco.2008.12-06-420
  65. 65Robinson, M. J. F., Anselme, P., Fischer, A. M., & Berridge, K. C. (2014). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119130. DOI: 10.1016/j.bbr.2014.03.004
  66. 66Robinson, M. J. F., Anselme, P., Suchomel, K., & Berridge, K. C. (2015). Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behavioral Neuroscience, 129(4), 502511. DOI: 10.1037/bne0000064
  67. 67Robinson, M. J. F., Fischer, A. M., Ahuja, A., Lesser, E. N., & Maniates, H. (2016). Roles of “Wanting” and “Liking” in Motivating Behavior: Gambling, Food, and Drug Addictions. Current Topics in Behavioral Neurosciences, 27, 105136. DOI: 10.1007/7854_2015_387
  68. 68Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247291. DOI: 10.1016/0165-0173(93)90013-P
  69. 69Saunders, J. B., Aasland, O. G., Babor, T. F., de la Fuente, J. R., & Grant, M. (1993). Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption—II. Addiction, 88, 791804. DOI: 10.1111/j.1360-0443.1993.tb02093.x
  70. 70Schulz, E., & Gershman, S. J. (2019). The algorithmic architecture of exploration in the human brain. Current Opinion in Neurobiology, 55, 714. DOI: 10.1016/j.conb.2018.11.003
  71. 71Sescousse, G., Barbalat, G., Domenech, P., & Dreher, J.-C. (2013). Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain, 136(8), 25272538. DOI: 10.1093/brain/awt126
  72. 72Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., NSPN consortium, & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLoS Computational Biology, 15(2), e1006803. DOI: 10.1371/journal.pcbi.1006803
  73. 73Shao, R., Read, J., Behrens, T. E. J., & Rogers, R. D. (2013). Shifts in reinforcement signalling while playing slot-machines as a function of prior experience and impulsivity. Translational Psychiatry, 3(2), e235. DOI: 10.1038/tp.2013.10
  74. 74Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, 2nd ed (S. xxii, 526). The MIT Press.
  75. 75van Holst, R. J., Sescousse, G., Janssen, L. K., Janssen, M., Berry, A. S., Jagust, W. J., & Cools, R. (2018). Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction. Biological Psychiatry, 83(12), 10361043. DOI: 10.1016/j.biopsych.2017.06.010
  76. 76van Holst, R. J., Veltman, D. J., Büchel, C., van den Brink, W., & Goudriaan, A. E. (2012). Distorted Expectancy Coding in Problem Gambling: Is the Addictive in the Anticipation? Biological Psychiatry, 71(8), 741748. DOI: 10.1016/j.biopsych.2011.12.030
  77. 77van Holst, R. J., Veltman, D. J., van den Brink, W., & Goudriaan, A. E. (2012). Right on cue? Striatal reactivity in problem gamblers. Biol Psychiatry, 72, e234. DOI: 10.1016/j.biopsych.2012.06.017
  78. 78van Timmeren, T., Daams, J. G., van Holst, R. J., & Goudriaan, A. E. (2018). Compulsivity-related neurocognitive performance deficits in gambling disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 204217. DOI: 10.1016/j.neubiorev.2017.11.022
  79. 79Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 14131432. DOI: 10.1007/s11222-016-9696-4
  80. 80Wabersich, D., & Vandekerckhove, J. (2014). Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example). Behavior Research Methods, 46(1), 1528. DOI: 10.3758/s13428-013-0369-3
  81. 81Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Šmíra, M., Epskamp, S., Etz, A., Matzke, D., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 5876. DOI: 10.3758/s13423-017-1323-7
  82. 82Wagner, B., Clos, M., Sommer, T., & Peters, J. (2020). Dopaminergic Modulation of Human Intertemporal Choice: A Diffusion Model Analysis Using the D2-Receptor Antagonist Haloperidol. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(41), 79367948. DOI: 10.1523/JNEUROSCI.0592-20.2020
  83. 83Wiehler, A., Chakroun, K., & Peters, J. (2021). Attenuated Directed Exploration during Reinforcement Learning in Gambling Disorder. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 41(11), 25122522. DOI: 10.1523/JNEUROSCI.1607-20.2021
  84. 84Wiehler, A., & Peters, J. (2015). Reward-based decision making in pathological gambling: The roles of risk and delay. Neuroscience Research, 90, 314. DOI: 10.1016/j.neures.2014.09.008
  85. 85Wilson, R. C., Bonawitz, E., Costa, V. D., & Ebitz, R. B. (2021). Balancing exploration and exploitation with information and randomization. Current Opinion in Behavioral Sciences, 38, 4956. DOI: 10.1016/j.cobeha.2020.10.001
  86. 86Wyckmans, F., Otto, A. R., Sebold, M., Daw, N., Bechara, A., Saeremans, M., Kornreich, C., Chatard, A., Jaafari, N., & Noël, X. (2019). Reduced model-based decision-making in gambling disorder. Scientific Reports, 9(1), 19625. DOI: 10.1038/s41598-019-56161-z
  87. 87Zack, M., Featherstone, R. E., Mathewson, S., & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Frontiers in Behavioral Neuroscience, 8, 36. DOI: 10.3389/fnbeh.2014.00036
  88. 88Zhou, Z., Zhou, H., & Zhu, H. (2016). Working memory, executive function and impulsivity in Internet-addictive disorders: A comparison with pathological gambling. Acta Neuropsychiatrica, 28(2), 92100. DOI: 10.1017/neu.2015.54
DOI: https://doi.org/10.5334/cpsy.104 | Journal eISSN: 2379-6227
Language: English
Submitted on: Oct 7, 2023
Accepted on: Mar 7, 2024
Published on: Mar 20, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Antonius Wiehler, Jan Peters, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.