References
- 1Adams, R. A., Huys, Q. J. M., & Roiser, J. P. (2016). Computational Psychiatry: Towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery & Psychiatry, 87(1), 53–63. 10.1136/jnnp-2015-310737
- 2Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L., & Platt, M. L. (2017). A Primer on Foraging and the Explore/Exploit Trade-Off for Psychiatry Research. Neuropsychopharmacology, 42(10), Article 10. 10.1038/npp.2017.108
- 3Addicott, M. A., Pearson, J. M., Wilson, J., Platt, M. L., & McClernon, F. J. (2013). Smoking and the bandit: A preliminary study of smoker and nonsmoker differences in exploratory behavior measured with a multiarmed bandit task. Experimental and Clinical Psychopharmacology, 21, 66–73. 10.1037/a0030843
- 4Akam, T., Costa, R., & Dayan, P. (2015). Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task. PLOS Computational Biology, 11(12),
e1004648 . 10.1371/journal.pcbi.1004648 - 5Balleine, B., & O’Doherty, J. (2010). Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action. Neuropsychopharmacol, 35, 48–69. 10.1038/npp.2009.131
- 6Banca, P., Ruiz, M. H., Gonzalez-Zalba, M. F., Biria, M., Marzuki, A. A., Piercy, T., Sule, A., Fineberg, N. A., & Robbins, T. W. (2023). Action-sequence learning, habits and automaticity in obsessive-compulsive disorder. eLife, 12. 10.7554/eLife.87346
- 8Bornstein, A., & Banavar, N. V. (2023). Multi-plasticities: Distinguishing context-specific habits from complex perseverations. PsyArXiv. 10.31234/osf.io/t7vsc
- 7Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the Reliability of Computational Analyses: Model-Based Planning and Its Relationship With Compulsivity. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 5(6), 601–609. 10.1016/j.bpsc.2019.12.019
- 9Bruder, L. R., Wagner, B., Mathar, D., & Peters, J. (2021). Increased temporal discounting and reduced model-based control in problem gambling are not substantially modulated by exposure to virtual gambling environments (p. 2021.09.16.459889). bioRxiv. 10.1101/2021.09.16.459889
- 10Castro-Rodrigues, P., Akam, T., Snorasson, I., Camacho, M., Paixão, V., Maia, A., Barahona-Corrêa, J. B., Dayan, P., Simpson, H. B., Costa, R. M., & Oliveira-Maia, A. J. (2022). Explicit knowledge of task structure is a primary determinant of human model-based action. Nature Human Behaviour, 6(8), Article 8. 10.1038/s41562-022-01346-2
- 11Chakroun, K., Mathar, D., Wiehler, A., Ganzer, F., & Peters, J. (2020). Dopaminergic modulation of the exploration/exploitation trade-off in human decision-making. ELife, 9,
e51260 . 10.7554/eLife.51260 - 12Cogliati Dezza, I., Yu, A. J., Cleeremans, A., & Alexander, W. (2017). Learning the value of information and reward over time when solving exploration-exploitation problems. Scientific Reports, 7(1), Article 1. 10.1038/s41598-017-17237-w
- 13Collins, A. G. E., Albrecht, M. A., Waltz, J. A., Gold, J. M., & Frank, M. J. (2017). Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia. Biological Psychiatry, 82(6), 431–439. 10.1016/j.biopsych.2017.05.017
- 14Collins, A. G. E., & Cockburn, J. (2020). Beyond dichotomies in reinforcement learning. Nature Reviews Neuroscience, 21(10), Article 10. 10.1038/s41583-020-0355-6
- 15Conway, C. C., & Krueger, R. F. (2021). Rethinking the Diagnosis of Mental Disorders: Data-Driven Psychological Dimensions, Not Categories, as a Framework for Mental-Health Research, Treatment, and Training. Current Directions in Psychological Science, 30(2), 151–158. 10.1177/0963721421990353
- 16Culbreth, A. J., Westbrook, A., Daw, N. D., Botvinick, M., & Barch, D. M. (2016). Reduced model-based decision-making in schizophrenia. Journal of Abnormal Psychology, 125, 777–787. 10.1037/abn0000164
- 17Dalgleish, T., Black, M., Johnston, D., & Bevan, A. (2020). Transdiagnostic approaches to mental health problems: Current status and future directions. Journal of Consulting and Clinical Psychology, 88(3), 179. 10.1037/ccp0000482
- 18Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69(6), 1204–1215. 10.1016/j.neuron.2011.02.027
- 19Daw, N. D., & O’Doherty, J. P. (2014).
Multiple Systems for Value Learning . In Neuroeconomics (pp. 393–410). Elsevier. 10.1016/B978-0-12-416008-8.00021-8 - 20Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879. 10.1038/nature04766
- 21Dolan, R. J., & Dayan, P. (2013). Goals and Habits in the Brain. Neuron, 80(2), 312–325. 10.1016/j.neuron.2013.09.007
- 22Doody, M., Van Swieten, M. M. H., & Manohar, S. G. (2022). Model-based learning retrospectively updates model-free values. Scientific Reports, 12(1), Article 1. 10.1038/s41598-022-05567-3
- 23Eppinger, B., Walter, M., Heekeren, H. R., & Li, S.-C. (2013). Of goals and habits: Age-related and individual differences in goal-directed decision-making. Frontiers in Neuroscience, 7, 253. 10.3389/fnins.2013.00253
- 24Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489. 10.1038/nn1579
- 25Feher da Silva, C., & Hare, T. A. (2018). A note on the analysis of two-stage task results: How changes in task structure affect what model-free and model-based strategies predict about the effects of reward and transition on the stay probability. PLoS ONE, 13(4),
e0195328 . 10.1371/journal.pone.0195328 - 26Feher da Silva, C., & Hare, T. A. (2020). Humans primarily use model-based inference in the two-stage task. Nature Human Behaviour, 4(10), 1053–1066. 10.1038/s41562-020-0905-y
- 27Feher da Silva, C., Lombardi, G., Edelson, M., & Hare, T. A. (2022). A new take on model-based and model-free influences on mental effort and striatal prediction errors (p. 2022.11.04.515162). bioRxiv. 10.1101/2022.11.04.515162
- 28Feng, S. F., Wang, S., Zarnescu, S., & Wilson, R. C. (2021). The dynamics of explore–exploit decisions reveal a signal-to-noise mechanism for random exploration. Scientific Reports, 11(1), Article 1. 10.1038/s41598-021-82530-8
- 29Ferrante, M., & Gordon, J. A. (2021). Computational phenotyping and longitudinal dynamics to inform clinical decision-making in psychiatry. Neuropsychopharmacology, 46(1), Article 1. 10.1038/s41386-020-00852-z
- 30Foerde, K., Daw, N. D., Rufin, T., Walsh, B. T., Shohamy, D., & Steinglass, J. E. (2021). Deficient Goal-Directed Control in a Population Characterized by Extreme Goal Pursuit. Journal of Cognitive Neuroscience, 33(3), 463–481. 10.1162/jocn_a_01655
- 31Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions. Annual Review of Psychology, 67, 641–666. 10.1146/annurev-psych-122414-033645
- 32Fox, L., Dan, O., Elber-Dorozko, L., & Loewenstein, Y. (2020). Exploration: From machines to humans. Current Opinion in Behavioral Sciences, 35, 104–111. 10.1016/j.cobeha.2020.08.004
- 33Gershman, S. J. (2018). Deconstructing the human algorithms for exploration. Cognition, 173, 34–42. 10.1016/j.cognition.2017.12.014
- 34Gershman, S. J. (2019). Uncertainty and exploration. Decision, 6(3), 277–286. 10.1037/dec0000101
- 35Gershman, S. J. (2020). Origin of perseveration in the trade-off between reward and complexity. Cognition, 204, 104394. 10.1016/j.cognition.2020.104394
- 36Gershman, S. J., & Daw, N. D. (2012). Perception, action and utility: The tangled skein. Principles of Brain Dynamics: Global State Interactions, 293–312. 10.7551/mitpress/9108.003.0015
- 37Gijsen, S., Grundei, M., & Blankenburg, F. (2022). Active inference and the two-step task. Scientific Reports, 12(1), Article 1. 10.1038/s41598-022-21766-4
- 38Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., & Daw, N. D. (2016). Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. ELife, 5,
e11305 . 10.7554/eLife.11305 - 39Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., Robbins, T. W., & de Wit, S. (2011). Disruption in the Balance Between Goal-Directed Behavior and Habit Learning in Obsessive-Compulsive Disorder. American Journal of Psychiatry, 168(7), 718–726. 10.1176/appi.ajp.2011.10071062
- 40Gillan, C. M., & Robbins, T. W. (2014). Goal-directed learning and obsessive–compulsive disorder. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655), 20130475. 10.1098/rstb.2013.0475
- 41Goschke, T. (2014). Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: Advances, gaps, and needs in current research. International Journal of Methods in Psychiatric Research, 23(S1), 41–57. 10.1002/mpr.1410
- 42Hamroun, S., Lebreton, M., & Palminteri, S. (2022). Dissociation between task structure learning and performance in human model-based reinforcement learning. PsyArXiv. 10.31234/osf.io/2uw85
- 43Huys, Q. J. M., Browning, M., Paulus, M. P., & Frank, M. J. (2021). Advances in the computational understanding of mental illness. Neuropsychopharmacology, 46(1), Article 1. 10.1038/s41386-020-0746-4
- 44Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404–413. 10.1038/nn.4238
- 45Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748–751. 10.1176/appi.ajp.2010.09091379
- 46Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. 10.1115/1.3662552
- 47Kool, W., Cushman, F. A., & Gershman, S. J. (2016). When Does Model-Based Control Pay Off? PLOS Computational Biology, 12(8),
e1005090 . 10.1371/journal.pcbi.1005090 - 48Kool, W., Cushman, F. A., & Gershman, S. J. (2018).
Chapter 7—Competition and Cooperation Between Multiple Reinforcement Learning Systems . In R. Morris, A. Bornstein, & A. Shenhav (Eds.), Goal-Directed Decision Making (pp. 153–178). Academic Press. 10.1016/B978-0-12-812098-9.00007-3 - 49Kruschke, J. K. (2011). Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 6(3), 299–312. 10.1177/1745691611406925
- 50Lau, B., & Glimcher, P. W. (2005). Dynamic response-by-response models of matching behavior in rhesus monkeys. Journal of the Experimental Analysis of Behavior, 84(3), 555–579. 10.1901/jeab.2005.110-04
- 51Leeman, R. F., & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance use disorders: A focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469–490. 10.1007/s00213-011-2550-7
- 53Mandali, A., Weidacker, K., Kim, S.-G., & Voon, V. (2019). The ease and sureness of a decision: Evidence accumulation of conflict and uncertainty. Brain, 142(5), 1471–1482. 10.1093/brain/awz013
- 52Maia, T. V., Huys, Q. J. M., & Frank, M. J. (2017). Theory-Based Computational Psychiatry. Biological Psychiatry, 82(6), 382–384. 10.1016/j.biopsych.2017.07.016
- 54Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154–162. 10.1038/nn.2723
- 55Mathar, D., Wiebe, A., Tuzsus, D., & Peters, J. (2022). Erotic cue exposure increases physiological arousal, biases choices towards immediate rewards and attenuates model-based reinforcement learning. 10.1101/2022.09.04.506507
- 56McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior.
- 57Miller, K. J., Shenhav, A., & Ludvig, E. A. (2019). Habits without values. Psychological Review, 126(2), 292–311. 10.1037/rev0000120
- 58Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72–80. 10.1016/j.tics.2011.11.018
- 59Moran, R., Keramati, M., Dayan, P., & Dolan, R. J. (2019). Retrospective model-based inference guides model-free credit assignment. Nature Communications, 10(1), Article 1. 10.1038/s41467-019-08662-8
- 60Morris, L. S., Baek, K., Kundu, P., Harrison, N. A., Frank, M. J., & Voon, V. (2016). Biases in the Explore–Exploit Tradeoff in Addictions: The Role of Avoidance of Uncertainty. Neuropsychopharmacology, 41(4), Article 4. 10.1038/npp.2015.208
- 61Moutoussis, M., Eldar, E., & Dolan, R. J. (2017). Building a New Field of Computational Psychiatry. Biological Psychiatry, 82(6), 388–390. 10.1016/j.biopsych.2016.10.007
- 62Nebe, S., Kretzschmar, A., Brandt, M. C., & Tobler, P. N. (2024). Characterizing Human Habits in the Lab. Collabra: Psychology, 10(1), 92949. 10.1525/collabra.92949
- 63Otto, A. R., Gershman, S. J., Markman, A. B., & Daw, N. D. (2013a). The Curse of Planning. Psychological Science, 24(5), 751–761. 10.1177/0956797612463080
- 64Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A., & Daw, N. D. (2013b). Working-memory capacity protects model-based learning from stress. Proceedings of the National Academy of Sciences, 110(52), 20941–20946. 10.1073/pnas.1312011110
- 65Patzelt, E. H., Kool, W., Millner, A. J., & Gershman, S. J. (2019). Incentives Boost Model-Based Control Across a Range of Severity on Several Psychiatric Constructs. Biological Psychiatry, 85(5), 425–433. 10.1016/j.biopsych.2018.06.018
- 66Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin & Review, 24(4), 1234–1251. 10.3758/s13423-016-1199-y
- 67R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/ - 68Raja Beharelle, A., Polanía, R., Hare, T. A., & Ruff, C. C. (2015). Transcranial Stimulation over Frontopolar Cortex Elucidates the Choice Attributes and Neural Mechanisms Used to Resolve Exploration-Exploitation Trade-Offs. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(43), 14544–14556. 10.1523/JNEUROSCI.2322-15.2015
- 69Reiter, A. M. F., Deserno, L., Wilbertz, T., Heinze, H.-J., & Schlagenhauf, F. (2016). Risk Factors for Addiction and Their Association with Model-Based Behavioral Control. Frontiers in Behavioral Neuroscience, 10.
https://www.frontiersin.org/articles/10.3389/fnbeh.2016.00026 - 70Reiter, A. M. F., Heinze, H.-J., Schlagenhauf, F., & Deserno, L. (2017). Impaired Flexible Reward-Based Decision-Making in Binge Eating Disorder: Evidence from Computational Modeling and Functional Neuroimaging. Neuropsychopharmacology, 42(3), Article 3. 10.1038/npp.2016.95
- 71Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 81–91. 10.1016/j.tics.2011.11.009
- 72Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems (Vol. 37, p. 14). Cambridge, UK: University of Cambridge, Department of Engineering.
- 73Sadeghiyeh, H., Wang, S., Alberhasky, M. R., Kyllo, H. M., Shenhav, A., & Wilson, R. C. (2020). Temporal discounting correlates with directed exploration but not with random exploration. Scientific Reports, 10(1), Article 1. 10.1038/s41598-020-60576-4
- 74Sebold, M., Nebe, S., Garbusow, M., Guggenmos, M., Schad, D. J., Beck, A., Kuitunen-Paul, S., Sommer, C., Frank, R., Neu, P., Zimmermann, U. S., Rapp, M. A., Smolka, M. N., Huys, Q. J. M., Schlagenhauf, F., & Heinz, A. (2017). When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence. Biological Psychiatry, 82(11), 847–856. 10.1016/j.biopsych.2017.04.019
- 75Seow, T. X. F., Benoit, E., Dempsey, C., Jennings, M., Maxwell, A., O’Connell, R., & Gillan, C. M. (2021). Model-Based Planning Deficits in Compulsivity Are Linked to Faulty Neural Representations of Task Structure. The Journal of Neuroscience, 41(30), 6539. 10.1523/JNEUROSCI.0031-21.2021
- 76Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., Consortium, N., & Dolan, R. J. (2019b). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLOS Computational Biology, 15(2),
e1006803 . 10.1371/journal.pcbi.1006803 - 77Shahar, N., Moran, R., Hauser, T. U., Kievit, R. A., McNamee, D., Moutoussis, M., NSPN Consortium, & Dolan, R. J. (2019a). Credit assignment to state-independent task representations and its relationship with model-based decision making. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 15871–15876. 10.1073/pnas.1821647116
- 78Smith, R., Schwartenbeck, P., Stewart, J. L., Kuplicki, R., Ekhtiari, H., & Paulus, M. P. (2020). Imprecise action selection in substance use disorder: Evidence for active learning impairments when solving the explore-exploit dilemma. Drug and Alcohol Dependence, 215, 108208. 10.1016/j.drugalcdep.2020.108208
- 79Speekenbrink, M. (2022). Chasing Unknown Bandits: Uncertainty Guidance in Learning and Decision Making. Current Directions in Psychological Science, 31(5), 419–427. 10.1177/09637214221105051
- 80Sripada, C., & Weigard, A. (2021). Impaired Evidence Accumulation as a Transdiagnostic Vulnerability Factor in Psychopathology. Frontiers in Psychiatry, 12. 10.3389/fpsyt.2021.627179
- 81Stan Development Team. (2020). RStan: the R interface to Stan. R package version 2.21.2.
http://mc-stan.org/ - 82Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
- 83Toyama, A., Katahira, K., & Ohira, H. (2017). A simple computational algorithm of model-based choice preference. Cognitive, Affective, & Behavioral Neuroscience, 17(4), 764–783. 10.3758/s13415-017-0511-2
- 84Toyama, A., Katahira, K., & Ohira, H. (2019). Biases in estimating the balance between model-free and model-based learning systems due to model misspecification. Journal of Mathematical Psychology, 91, 88–102. 10.1016/j.jmp.2019.03.007
- 85Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., Bürkner, P., Paananen, T., & Gelman, A. (2023). “loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models.” R package version 2.6.0,
https://mc-stan.org/loo/ - 86Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. 10.1007/s11222-016-9696-4
- 87Voon, V., Derbyshire, K., Rück, C., Irvine, M. A., Worbe, Y., Enander, J., Schreiber, L. R. N., Gillan, C., Fineberg, N. A., Sahakian, B. J., Robbins, T. W., Harrison, N. A., Wood, J., Daw, N. D., Dayan, P., Grant, J. E., & Bullmore, E. T. (2015). Disorders of compulsivity: A common bias towards learning habits. Molecular Psychiatry, 20(3), Article 3. 10.1038/mp.2014.44
- 88Voon, V., Reiter, A., Sebold, M., & Groman, S. (2017). Model-Based Control in Dimensional Psychiatry. Biological Psychiatry, 82(6), 391–400. 10.1016/j.biopsych.2017.04.006
- 89Waford, R. N., & Lewine, R. (2010). Is perseveration uniquely characteristic of schizophrenia? Schizophrenia Research, 118(1), 128–133. 10.1016/j.schres.2010.01.031
- 90Wagner, B., Mathar, D., & Peters, J. (2022). Gambling environment exposure increases temporal discounting but improves model-based control in regular slot-machine gamblers. Computational Psychiatry, 6(1), 142. 10.5334/cpsy.84
- 91Waller, G., Shaw, T., Meyer, C., Haslam, M., Lawson, R., & Serpell, L. (2012). Persistence, Perseveration and Perfectionism in the Eating Disorders. Behavioural and Cognitive Psychotherapy, 40(4), 462–473. 10.1017/S135246581200015X
- 92Wiehler, A., Chakroun, K., & Peters, J. (2021). Attenuated Directed Exploration during Reinforcement Learning in Gambling Disorder. The Journal of neuroscience: the official journal of the Society for Neuroscience, 41(11), 2512–2522. 10.1523/JNEUROSCI.1607-20.2021
- 93Wilson, R. C., Bonawitz, E., Costa, V. D., & Ebitz, R. B. (2021). Balancing exploration and exploitation with information and randomization. Current Opinion in Behavioral Sciences, 38, 49–56. 10.1016/j.cobeha.2020.10.001
- 94Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. ELife, 8,
e49547 . 10.7554/eLife.49547 - 95Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A., & Cohen, J. D. (2014). Humans use directed and random exploration to solve the explore-exploit dilemma. Journal of Experimental Psychology. General, 143(6), 2074–2081. 10.1037/a0038199
- 96Wise, T., & Dolan, R. J. (2020). Associations between aversive learning processes and transdiagnostic psychiatric symptoms in a general population sample. Nature Communications, 11(1), Article 1. 10.1038/s41467-020-17977-w
- 97Wyckmans, F., Otto, A. R., Sebold, M., Daw, N., Bechara, A., Saeremans, M., Kornreich, C., Chatard, A., Jaafari, N., & Noël, X. (2019). Reduced model-based decision-making in gambling disorder. Scientific Reports, 9(1), 19625. 10.1038/s41598-019-56161-z
- 98Yip, S. W., Barch, D. M., Chase, H. W., Flagel, S., Huys, Q. J., Konova, A. B., Montague, R., & Paulus, M. (2022). From computation to clinic. Biological Psychiatry Global Open Science. 10.1016/j.bpsgos.2022.03.011
