References
- 1ACER. (2018). Annual Report on the Results of Monitoring the Internal Electricity and Natural Gas Markets in 2017. Retrieved from
https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Publication/MMR%202017%20-%20CONSUMER%20PROTECTION.pdf - 2Adjei, A., Hamilton, L., & Roys, M. (2011). A Study of Homeowners’ Energy Efficiency Improvements and the Impact of the Energy Performance Certificate. Deliverable 5.2 from the Improving Dwellings by Enhancing Actions on Labelling for the EPBD Project. Watford: Building Research Establishment. Retrieved from
http://www.bre.co.uk/filelibrary/pdf/projects/homeowners_questionnaire_wa.pdf - 3Baker, P. (2015). A Retrofit of a Victorian Terrace House in New Bolsover: A Whole House Thermal Performance Assessment. Glasgow: Historic England & Glasgow Caledonian University.
- 4Bauer, M., & Scartezzini, J.-L. (1998). A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings. Energy and Buildings, 27(2), 147–154. DOI: 10.1016/S0378-7788(97)00035-2
- 5Bauwens, G., & Roels, S. (2014). Co-heating test: a state-of-the-art. Energy and Buildings, 82, 163–172. DOI: 10.1016/j.enbuild.2014.04.039
- 6BEIS. (2019). Delivering a Smart System: Consultation on a Smart Meter Policy Framework Post 2020. London: BEIS.
- 7Bennett, G., Elwell, C., & Oreszczyn, T. (2018). Space heating operation of combination boilers in the UK: The case for addressing real-world boiler performance. Building Services Engineering Research and Technology, 40(1). DOI: 10.1177/0143624418794552
- 8Buildings Performance Institute Europe. (2010). Energy Performance Certificates across Europe: From Design to Implementation. Brussels: Buildings Performance Institute Europe.
- 9Buildings Performance Institute Europe. (2014). Energy Performance Certificates across the EU: A Mapping of National Approaches. Brussels: Buildings Performance Institute Europe.
- 10Cayre, E., Allibe, B., & Laurent, M.-H. (2011). There are people in the house! How the results of purely technical analysis of residential energy consumption are misleading for energy policies. Paper presented at the ECEEE 2011 Summer Study, Presqu’île de Giens, France,
6–11 June 2011 . - 11Chambers, J. (2017).
Developing a rapid, scalable method of thermal characterisation for UK dwellings using smart meter data . (Doctoral thesis, UCL, London). - 12Chambers, J., & Oreszczyn, T. (2018). Deconstruct: a scalable method of as-built heat power loss coefficient inference for UK dwellings using smart meter data. Energy and Buildings, 183, 443–453. DOI: 10.1016/j.enbuild.2018.11.016
- 13Chapman, J. (1991). Data accuracy and model reliability. Paper presented at the Building Environmental Performance Assessment Criteria (BEPAC) conference, Canterbury, UK,
1991 . Retrieved fromhttps://www.usablebuildings.co.uk/UsableBuildings/Unprotected/JakeChapman.pdf - 14Christensen, T. H., Gram-Hanssen, K., de Best-Waldhober, M., & Adjei, A. (2014). Energy retrofits of Danish homes: is the Energy Performance Certificate useful? Building Research & Information, 42(4), 489–500. DOI: 10.1080/09613218.2014.908265
- 15Crawley, J., Biddulph, P., Northrop, P. J., Wingfield, J., Oreszczyn, T., & Elwell, C. (2019). Quantifying the measurement error on England and Wales EPC ratings. Energies, 12(18), art.
3523 . DOI: 10.3390/en12183523 - 16Cuijpers, C., & Koops, B.-J. (2013).
Smart metering and privacy in Europe: lessons from the Dutch case . In S. Gutwirth, R. Leenes, P. de Hert and Y. Poullet (Eds.), European Data Protection: Coming of Age (pp. 269–293). Amsterdam: Springer. DOI: 10.1007/978-94-007-5170-5_12 - 17Data Communications Company. (2020). Data Communications Company. Retrieved from
https://www.smartdcc.co.uk/ - 18Delghust, M., Roelens, W., Tanghe, T., De Weerdt, Y., & Janssens, A. (2015). Regulatory energy calculations versus real energy use in high-performance houses. Building Research & Information, 43(6), 675–690. DOI: 10.1080/09613218.2015.1033874
- 19Department for Communities and Local Government (DCLG). (2013).
Approved Document L1A: conservation of fuel and power in new dwellings, 2013 edition with 2016 amendments . London: HMSO. - 20Deutsche Energie-Agentur. (2018). Energieverbrauchsausweis: Was ist ein Verbrauchsausweis? Retrieved from
https://www.dena-expertenservice.de/fachinfos/fragen-experten-antworten/fragen-antworten-faq/energieausweis/energieverbrauchsausweis/ - 21DKCESB. (2018).
Energy Requirements of BR18 . Taastrup: DKCESB. Retrieved from:https://www.byggeriogenergi.dk/media/2202/danishbuildingregulations_2018_energy-requirements.pdf - 22Elering. (2020). Elering. Retrieved from
https://elering.ee/ - 23European Commission. (2014a). Cost–Benefit Analyses & State of Play of Smart Metering Deployment in the EU-27. Brussels: European Commission.
- 24European Commission. (2014b). Benchmarking Smart Metering Deployment in the EU-27 with a Focus on Electricity. Brussels: European Commission.
- 25European Commission. (2017). The EU and Energy Union and Climate Action. Brussels: European Commission.
- 26European Commission. (2019). Benchmarking Smart Metering Deployment in the EU-28: Revised Final Report. Belgium: European Commission.
- 27European Parliament. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast). Brussels: European Parliament.
- 28European Parliament. (2016a). General Data Protection Regulation [GDPR]. Brussels: European Parliament.
- 29European Parliament. (2016b). Proposal for a Directive of the European Parliament and of the Council on Common Rules for the Internal Market in Electricity (Recast). Brussels: European Parliament.
- 30Fabi, V., Andersen, R. V., Corgnati, S., & Olesen, B. W. (2012). Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. Building and Environment, 58, 188–198. DOI: 10.1016/j.buildenv.2012.07.009
- 31Favre, P., Barde, O., Weinmann, C., & Trachsel, C. (1983). La signature energétiquë outil du diagnostic thermique d’un bâtiment. Annales de l’Institut technique du bâtiment et des travaux publics, 419, 35–59.
- 32Fels, M. F. (1986). PRISM: An introduction. Energy and Buildings, 9(1), 5–18. DOI: 10.1016/0378-7788(86)90003-4
- 33Fonti, A., Comodi, G., Pizzuti, S., Arteconi, A., & Helsen, L. (2017). Low order grey-box models for short-term thermal behavior prediction in buildings. Energy Procedia, 105, 2107–2112. DOI: 10.1016/j.egypro.2017.03.592
- 34Ghiaus, C. (2006). Experimental estimation of building energy performance by robust regression. Energy and Buildings, 38(6), 582–587. DOI: 10.1016/j.enbuild.2005.08.014
- 35Gianniou, P., Reinhart, C., Hsu, D., Heller, A., & Rode, C. (2018). Estimation of temperature setpoints and heat transfer coefficients among residential buildings in Denmark based on smart meter data. Building and Environment, 139, 125–133. DOI: 10.1016/j.buildenv.2018.05.016
- 36Gonzalez-Caceres, A., & Vik, T. A. (2019).
Improving the Energy Performance Certificate recommendations accuracy for residential building through simple measurements of key inputs . IOP Conference Series: Materials Science and Engineering, 609(3). Ventilation Strategies and Measurement Techniques. DOI: 10.1088/1757-899X/609/3/032065 - 37Gratzl-Michlmair, M., Graf, C., & Goerth, A. (2010). Vergleichsberechnung eines Energieausweises nach deutschen und österreichischen Algorithmen. Bauphysik, 34(6), 286–291. DOI: 10.1002/bapi.201200031
- 38Grove-Smith, J., Aydin, V., Feist, W., Schnieders, J., & Thomas, S. (2018). Standards and policies for very high energy efficiency in the urban building sector towards reaching the 1.5°C target. Current Opinion in Environmental Sustainability, 30, 103–114. DOI: 10.1016/j.cosust.2018.04.006
- 39Harb, H., Boyanov, N., Hernandez, L., Streblow, R., & Müller, D. (2016). Development and validation of grey-box models for forecasting the thermal response of occupied buildings. Energy and Buildings, 117, 199–207. DOI: 10.1016/j.enbuild.2016.02.021
- 40Hardy, A., & Glew, D. (2019). An analysis of errors in the Energy Performance Certificate database. Energy Policy, 129, 1168–1178. DOI: 10.1016/j.enpol.2019.03.022
- 41Heincke, C., Jagemar, L., & Nilsson, P. E. (2011). Normalårskorrigering av energistatistik. Retrieved from
http://www.enerma.se/wp-content/uploads/2018/01/normalarskorrigering.pdf - 42HM Government. (2017). The Clean Growth Strategy: Leading the Way to a Low Carbon Future. London: HM Government. Retrieved from
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/651916/BEIS_The_Clean_Growth_online_12.10.17.pdf - 43Hollick, F. P., Gori, V., & Elwell, C. A. (2020). Thermal performance of occupied homes: A dynamic grey-box method accounting for solar gains. Energy and Buildings, 208, art.
109669 . DOI: 10.1016/j.enbuild.2019.109669 - 44Hughes, M., Palmer, J., Cheng, V., & Shipworth, D. (2015). Global sensitivity analysis of England’s housing energy model. Journal of Building Performance Simulation, 8(5), 283–294. DOI: 10.1080/19401493.2014.925505
- 45IEA. (2018). IEA World Energy Balances 2018. Paris: IEA. Retrieved from
https://www.iea.org/statistics - 46IEA-EBC. (2019). EBC Annex 71: Building Energy Performance Assessment Based on In-Situ Measurements. Retrieved from
http://annex71.iea-ebc.org/projects/project?AnnexID=71 - 47IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: IPCC.
- 48ISO. (2017). ISO 52016-1:2017. Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads. Geneva: International Standards Organization (ISO).
- 49Jack, R., Loveday, D., Allinson, D., & Lomas, K. (2018). First evidence for the reliability of building co-heating tests. Building Research & Information, 46(4), 383–401. DOI: 10.1080/09613218.2017.1299523
- 50Jenkins, D., Simpson, S., & Peacock, A. (2017). Investigating the consistency and quality of EPC ratings and assessments. Energy, 138, 480–489. DOI: 10.1016/j.energy.2017.07.105
- 51Laurent, M.-H., Allibe, B., Oreszczyn, T., Hamilton, I., Galvin, R., & Tigchelaar, C. (2013). Back to reality: How domestic energy efficiency policies in four European countries can be improved by using empirical data instead of normative calculation. Paper presented at the ECEEE 2013 Summer Study Proceedings, Conference, Rethink, Renew, Restart, Presqu’île de Giens, France,
3–8 June 2013 . - 52Leipziger, D. (2013). Comparing Building Energy Performance Measurement: A Framework for International Energy Efficiency Assessment Systems. Washington, DC: Institute for Market Transformation.
- 53Li, M., Allinson, D., & Lomas, K. (2019). Estimation of building heat transfer coefficients from in-use data: impacts of unmonitored energy flows. International Journal of Building Pathology and Adaptation, 38(1), 38–50. DOI: 10.1108/IJBPA-02-2019-0022
- 54Liddell, C., & Morris, C. (2010). Fuel poverty and human health: a review of recent evidence. Energy Policy, 38(6), 2987–2997. DOI: 10.1016/j.enpol.2010.01.037
- 55Lomas, K. J., Beizaee, A., Allinson, D., Haines, V. J., Beckhelling, J., Loveday, D. L., … Morton, A. (2019). A domestic operational rating for UK homes: Concept, formulation and application. Energy and Buildings, 201, 90–117. DOI: 10.1016/j.enbuild.2019.07.021
- 56Mangematin, E., Pandraud, G., & Roux, D. (2012). Quick measurements of energy efficiency of buildings. Comptes Rendus Physique, 13(4), 383–390. DOI: 10.1016/j.crhy.2012.04.001
- 57Mangold, M., Österbring, M., & Wallbaum, H. (2015). Handling data uncertainties when using Swedish energy performance certificate data to describe energy usage in the building stock. Energy and Buildings, 102, 328–336. DOI: 10.1016/j.enbuild.2015.05.045
- 58Mathew, P. A., Dunn, L. N., Sohn, M. D., Mercado, A., Custudio, C., & Walter, T. (2015). Big-data for building energy performance: Lessons from assembling a very large national database of building energy use. Applied Energy, 140, 85–93. DOI: 10.1016/j.apenergy.2014.11.042
- 59Murphy, L. (2014). The influence of the Energy Performance Certificate: The Dutch case. Energy Policy, 67, 664–672. DOI: 10.1016/j.enpol.2013.11.054
- 60National Statistics. (2019). English Housing Survey 2017 to 2018: Energy. London: UK Government. Retrieved from
https://www.gov.uk/government/statistics/english-housing-survey-2017-to-2018-energy - 61NHER. (2009). Energy Performance Certificates: Seizing the Opportunity (Report 1). Milton Keynes: NHER.
- 62Palmer, J., Pane, G., Bell, M., & Wingfield, J. (2011). Comparing Primary and Secondary Terms Analysis and Renormalisation (PStar) Test and Co-Heating Test Results (Final Report No. BD2702). London: Department for Communities and Local Government (DCLG).
- 63Pascuas, R. P., Paoletti, G., & Lollini, R. (2017). Impact and reliability of EPCs in the real estate market. Energy Procedia, 140, 102–114. DOI: 10.1016/j.egypro.2017.11.127
- 64Pereira, P. F., & Ramos, N. M. M. (2018). Detection of occupant actions in buildings through change point analysis of in-situ measurements. Energy and Buildings, 173, 365–377. DOI: 10.1016/j.enbuild.2018.05.050
- 65Rabl, A., & Rialhe, A. (1992). Energy signature models for commercial buildings: test with measured data and interpretation. Energy and Buildings, 19(2), 143–154. DOI: 10.1016/0378-7788(92)90008-5
- 66Rafols, I. (2015). Performance Gap and its Assessment Methodology in Built2Spec Project. Retrieved from
https://built2spec-project.eu/wp-content/uploads/2016/06/Built2Spec_Performance_gap_assessment_methodology_part_1.pdf - 67Republique Française. (2012). Transposition complète de la directive 2010/31/UE du Parlement européen et du Conseil sur la performance énergétique des bâtiments. Paris: Legifrance.
- 68Sakuma, Y., & Nishi, H. (2019). Estimation of building thermal performance using simple sensors and air conditioners. Energies, 12(15), art.
2950 . DOI: 10.3390/en12152950 - 69Sharpe, T., Farren, P., Howieson, S., Tuohy, P., & McQuillan, J. (2015). Occupant interactions and effectiveness of natural ventilation strategies in contemporary new housing in Scotland, UK. International Journal of Environmental Research and Public Health, 12(7), 8480–8497. DOI: 10.3390/ijerph120708480
- 70Smart Energy Code Company. (2013). Smart Energy Code. London: Smart Energy Code Company.
- 71SMHI. (2018). SMHI ENERGI-INDEX. Norrkoping. Retrieved from
https://www.smhi.se/polopoly_fs/1.3499!/Menu/general/extGroup/attachmentColHold/mainCol1/file/Produktexempel%20f%C3%B6rklaring%20Energi%20Index%20151026.pdf - 72Smith, P. D. (2016). Smart thermostats lessons learned. Paper presented at the 2016 ACEEE Summer Study on Energy Efficiency in Buildings, CA, USA.
- 73Stamp, S., Altamirano-Medina, H., & Lowe, R. (2017). Measuring and accounting for solar gains in steady state whole building heat loss measurements. Energy and Buildings, 153, 168–178. DOI: 10.1016/j.enbuild.2017.06.063
- 74Subbarao, K., Burch, J., Hancock, C., Lekov, A., & Balcomb, J. (1988). Short-Term Energy Monitoring (STEM): Application of the PSTAR Method to a Residence in Fredericksburg, Virginia. Golden: Solar Energy Research Institute. DOI: 10.2172/6734885
- 75Summerfield, A. J., Oreszczyn, T., Hamilton, I. G., Shipworth, D., Huebner, G. M., Lowe, R. J., & Ruyssevelt, P. (2015). Empirical variation in 24-h profiles of delivered power for a sample of UK dwellings: Implications for evaluating energy savings. Energy and Buildings, 88, 193–202. DOI: 10.1016/j.enbuild.2014.11.075
- 76Thébault, S., & Bouchié, R. (2018). Refinement of the ISABELE method regarding uncertainty quantification and thermal dynamics modelling. Energy and Buildings, 178, 182–205. DOI: 10.1016/j.enbuild.2018.08.047
- 77Thomson, H., & Snell, C. (2013). Quantifying the prevalence of fuel poverty across the European Union. Energy Policy, 52, 563–572. DOI: 10.1016/j.enpol.2012.10.009
- 78UNFCCC. (2015). Paris Agreement (FCCCC/CP/2015/L. 9/Rev. 1). Bonn: United Nations Framework Convention on Climate Change (UNFCCC).
- 79Williamson, T., Soebarto, V., Bennetts, H., & Radford, A. (2006). House/home energy rating schemes/systems (HERS). Paper presented at the Proceedings of the 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland,
6–8 September 2006 . - 80Yang, R., & Newman, M. W. (2013). Learning from a learning thermostat: lessons for intelligent systems for the home. Paper presented at the Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland,
8–12 September 2013 . DOI: 10.1145/2493432.2493489 - 81Zero Carbon Hub. (2010). Closing the Gap between Designed and Built Performance. Retrieved from
http://www.zerocarbonhub.org/sites/default/files/resources/reports/Carbon_Compliance_Topic%204_Closing_the_Gap_Between_DvAB.pdf - 82Zhou, S., & Brown, M. A. (2017). Smart meter deployment in Europe: A comparative case study on the impacts of national policy schemes. Journal of Cleaner Production, 144, 22–32. DOI: 10.1016/j.jclepro.2016.12.031
- 83Zirngibl, J., Visier, J. C., & Arkesteijn, K. (2009). EN 15217: Energy Performance of Buildings—Methods for Expressing Energy Performance and for the Energy Certification of Buildings. Retrieved from
http://www.buildup.eu/sites/default/files/content/P155_EN_CENSE_EN_15217.pdf
