Have a personal or library account? Click to login
Creating Domestic Building Thermal Performance Ratings Using Smart Meter Data Cover

Creating Domestic Building Thermal Performance Ratings Using Smart Meter Data

Open Access
|Mar 2020

References

  1. 1ACER. (2018). Annual Report on the Results of Monitoring the Internal Electricity and Natural Gas Markets in 2017. Retrieved from https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Publication/MMR%202017%20-%20CONSUMER%20PROTECTION.pdf
  2. 2Adjei, A., Hamilton, L., & Roys, M. (2011). A Study of Homeowners’ Energy Efficiency Improvements and the Impact of the Energy Performance Certificate. Deliverable 5.2 from the Improving Dwellings by Enhancing Actions on Labelling for the EPBD Project. Watford: Building Research Establishment. Retrieved from http://www.bre.co.uk/filelibrary/pdf/projects/homeowners_questionnaire_wa.pdf
  3. 3Baker, P. (2015). A Retrofit of a Victorian Terrace House in New Bolsover: A Whole House Thermal Performance Assessment. Glasgow: Historic England & Glasgow Caledonian University.
  4. 4Bauer, M., & Scartezzini, J.-L. (1998). A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings. Energy and Buildings, 27(2), 147154. DOI: 10.1016/S0378-7788(97)00035-2
  5. 5Bauwens, G., & Roels, S. (2014). Co-heating test: a state-of-the-art. Energy and Buildings, 82, 163172. DOI: 10.1016/j.enbuild.2014.04.039
  6. 6BEIS. (2019). Delivering a Smart System: Consultation on a Smart Meter Policy Framework Post 2020. London: BEIS.
  7. 7Bennett, G., Elwell, C., & Oreszczyn, T. (2018). Space heating operation of combination boilers in the UK: The case for addressing real-world boiler performance. Building Services Engineering Research and Technology, 40(1). DOI: 10.1177/0143624418794552
  8. 8Buildings Performance Institute Europe. (2010). Energy Performance Certificates across Europe: From Design to Implementation. Brussels: Buildings Performance Institute Europe.
  9. 9Buildings Performance Institute Europe. (2014). Energy Performance Certificates across the EU: A Mapping of National Approaches. Brussels: Buildings Performance Institute Europe.
  10. 10Cayre, E., Allibe, B., & Laurent, M.-H. (2011). There are people in the house! How the results of purely technical analysis of residential energy consumption are misleading for energy policies. Paper presented at the ECEEE 2011 Summer Study, Presqu’île de Giens, France, 6–11 June 2011.
  11. 11Chambers, J. (2017). Developing a rapid, scalable method of thermal characterisation for UK dwellings using smart meter data. (Doctoral thesis, UCL, London).
  12. 12Chambers, J., & Oreszczyn, T. (2018). Deconstruct: a scalable method of as-built heat power loss coefficient inference for UK dwellings using smart meter data. Energy and Buildings, 183, 443453. DOI: 10.1016/j.enbuild.2018.11.016
  13. 13Chapman, J. (1991). Data accuracy and model reliability. Paper presented at the Building Environmental Performance Assessment Criteria (BEPAC) conference, Canterbury, UK, 1991. Retrieved from https://www.usablebuildings.co.uk/UsableBuildings/Unprotected/JakeChapman.pdf
  14. 14Christensen, T. H., Gram-Hanssen, K., de Best-Waldhober, M., & Adjei, A. (2014). Energy retrofits of Danish homes: is the Energy Performance Certificate useful? Building Research & Information, 42(4), 489500. DOI: 10.1080/09613218.2014.908265
  15. 15Crawley, J., Biddulph, P., Northrop, P. J., Wingfield, J., Oreszczyn, T., & Elwell, C. (2019). Quantifying the measurement error on England and Wales EPC ratings. Energies, 12(18), art. 3523. DOI: 10.3390/en12183523
  16. 16Cuijpers, C., & Koops, B.-J. (2013). Smart metering and privacy in Europe: lessons from the Dutch case. In S. Gutwirth, R. Leenes, P. de Hert and Y. Poullet (Eds.), European Data Protection: Coming of Age (pp. 269293). Amsterdam: Springer. DOI: 10.1007/978-94-007-5170-5_12
  17. 17Data Communications Company. (2020). Data Communications Company. Retrieved from https://www.smartdcc.co.uk/
  18. 18Delghust, M., Roelens, W., Tanghe, T., De Weerdt, Y., & Janssens, A. (2015). Regulatory energy calculations versus real energy use in high-performance houses. Building Research & Information, 43(6), 675690. DOI: 10.1080/09613218.2015.1033874
  19. 19Department for Communities and Local Government (DCLG). (2013). Approved Document L1A: conservation of fuel and power in new dwellings, 2013 edition with 2016 amendments. London: HMSO.
  20. 20Deutsche Energie-Agentur. (2018). Energieverbrauchsausweis: Was ist ein Verbrauchsausweis? Retrieved from https://www.dena-expertenservice.de/fachinfos/fragen-experten-antworten/fragen-antworten-faq/energieausweis/energieverbrauchsausweis/
  21. 21DKCESB. (2018). Energy Requirements of BR18. Taastrup: DKCESB. Retrieved from: https://www.byggeriogenergi.dk/media/2202/danishbuildingregulations_2018_energy-requirements.pdf
  22. 22Elering. (2020). Elering. Retrieved from https://elering.ee/
  23. 23European Commission. (2014a). Cost–Benefit Analyses & State of Play of Smart Metering Deployment in the EU-27. Brussels: European Commission.
  24. 24European Commission. (2014b). Benchmarking Smart Metering Deployment in the EU-27 with a Focus on Electricity. Brussels: European Commission.
  25. 25European Commission. (2017). The EU and Energy Union and Climate Action. Brussels: European Commission.
  26. 26European Commission. (2019). Benchmarking Smart Metering Deployment in the EU-28: Revised Final Report. Belgium: European Commission.
  27. 27European Parliament. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast). Brussels: European Parliament.
  28. 28European Parliament. (2016a). General Data Protection Regulation [GDPR]. Brussels: European Parliament.
  29. 29European Parliament. (2016b). Proposal for a Directive of the European Parliament and of the Council on Common Rules for the Internal Market in Electricity (Recast). Brussels: European Parliament.
  30. 30Fabi, V., Andersen, R. V., Corgnati, S., & Olesen, B. W. (2012). Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. Building and Environment, 58, 188198. DOI: 10.1016/j.buildenv.2012.07.009
  31. 31Favre, P., Barde, O., Weinmann, C., & Trachsel, C. (1983). La signature energétiquë outil du diagnostic thermique d’un bâtiment. Annales de l’Institut technique du bâtiment et des travaux publics, 419, 3559.
  32. 32Fels, M. F. (1986). PRISM: An introduction. Energy and Buildings, 9(1), 518. DOI: 10.1016/0378-7788(86)90003-4
  33. 33Fonti, A., Comodi, G., Pizzuti, S., Arteconi, A., & Helsen, L. (2017). Low order grey-box models for short-term thermal behavior prediction in buildings. Energy Procedia, 105, 21072112. DOI: 10.1016/j.egypro.2017.03.592
  34. 34Ghiaus, C. (2006). Experimental estimation of building energy performance by robust regression. Energy and Buildings, 38(6), 582587. DOI: 10.1016/j.enbuild.2005.08.014
  35. 35Gianniou, P., Reinhart, C., Hsu, D., Heller, A., & Rode, C. (2018). Estimation of temperature setpoints and heat transfer coefficients among residential buildings in Denmark based on smart meter data. Building and Environment, 139, 125133. DOI: 10.1016/j.buildenv.2018.05.016
  36. 36Gonzalez-Caceres, A., & Vik, T. A. (2019). Improving the Energy Performance Certificate recommendations accuracy for residential building through simple measurements of key inputs. IOP Conference Series: Materials Science and Engineering, 609(3). Ventilation Strategies and Measurement Techniques. DOI: 10.1088/1757-899X/609/3/032065
  37. 37Gratzl-Michlmair, M., Graf, C., & Goerth, A. (2010). Vergleichsberechnung eines Energieausweises nach deutschen und österreichischen Algorithmen. Bauphysik, 34(6), 286291. DOI: 10.1002/bapi.201200031
  38. 38Grove-Smith, J., Aydin, V., Feist, W., Schnieders, J., & Thomas, S. (2018). Standards and policies for very high energy efficiency in the urban building sector towards reaching the 1.5°C target. Current Opinion in Environmental Sustainability, 30, 103114. DOI: 10.1016/j.cosust.2018.04.006
  39. 39Harb, H., Boyanov, N., Hernandez, L., Streblow, R., & Müller, D. (2016). Development and validation of grey-box models for forecasting the thermal response of occupied buildings. Energy and Buildings, 117, 199207. DOI: 10.1016/j.enbuild.2016.02.021
  40. 40Hardy, A., & Glew, D. (2019). An analysis of errors in the Energy Performance Certificate database. Energy Policy, 129, 11681178. DOI: 10.1016/j.enpol.2019.03.022
  41. 41Heincke, C., Jagemar, L., & Nilsson, P. E. (2011). Normalårskorrigering av energistatistik. Retrieved from http://www.enerma.se/wp-content/uploads/2018/01/normalarskorrigering.pdf
  42. 42HM Government. (2017). The Clean Growth Strategy: Leading the Way to a Low Carbon Future. London: HM Government. Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/651916/BEIS_The_Clean_Growth_online_12.10.17.pdf
  43. 43Hollick, F. P., Gori, V., & Elwell, C. A. (2020). Thermal performance of occupied homes: A dynamic grey-box method accounting for solar gains. Energy and Buildings, 208, art. 109669. DOI: 10.1016/j.enbuild.2019.109669
  44. 44Hughes, M., Palmer, J., Cheng, V., & Shipworth, D. (2015). Global sensitivity analysis of England’s housing energy model. Journal of Building Performance Simulation, 8(5), 283294. DOI: 10.1080/19401493.2014.925505
  45. 45IEA. (2018). IEA World Energy Balances 2018. Paris: IEA. Retrieved from https://www.iea.org/statistics
  46. 46IEA-EBC. (2019). EBC Annex 71: Building Energy Performance Assessment Based on In-Situ Measurements. Retrieved from http://annex71.iea-ebc.org/projects/project?AnnexID=71
  47. 47IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: IPCC.
  48. 48ISO. (2017). ISO 52016-1:2017. Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads. Geneva: International Standards Organization (ISO).
  49. 49Jack, R., Loveday, D., Allinson, D., & Lomas, K. (2018). First evidence for the reliability of building co-heating tests. Building Research & Information, 46(4), 383401. DOI: 10.1080/09613218.2017.1299523
  50. 50Jenkins, D., Simpson, S., & Peacock, A. (2017). Investigating the consistency and quality of EPC ratings and assessments. Energy, 138, 480489. DOI: 10.1016/j.energy.2017.07.105
  51. 51Laurent, M.-H., Allibe, B., Oreszczyn, T., Hamilton, I., Galvin, R., & Tigchelaar, C. (2013). Back to reality: How domestic energy efficiency policies in four European countries can be improved by using empirical data instead of normative calculation. Paper presented at the ECEEE 2013 Summer Study Proceedings, Conference, Rethink, Renew, Restart, Presqu’île de Giens, France, 3–8 June 2013.
  52. 52Leipziger, D. (2013). Comparing Building Energy Performance Measurement: A Framework for International Energy Efficiency Assessment Systems. Washington, DC: Institute for Market Transformation.
  53. 53Li, M., Allinson, D., & Lomas, K. (2019). Estimation of building heat transfer coefficients from in-use data: impacts of unmonitored energy flows. International Journal of Building Pathology and Adaptation, 38(1), 3850. DOI: 10.1108/IJBPA-02-2019-0022
  54. 54Liddell, C., & Morris, C. (2010). Fuel poverty and human health: a review of recent evidence. Energy Policy, 38(6), 29872997. DOI: 10.1016/j.enpol.2010.01.037
  55. 55Lomas, K. J., Beizaee, A., Allinson, D., Haines, V. J., Beckhelling, J., Loveday, D. L., … Morton, A. (2019). A domestic operational rating for UK homes: Concept, formulation and application. Energy and Buildings, 201, 90117. DOI: 10.1016/j.enbuild.2019.07.021
  56. 56Mangematin, E., Pandraud, G., & Roux, D. (2012). Quick measurements of energy efficiency of buildings. Comptes Rendus Physique, 13(4), 383390. DOI: 10.1016/j.crhy.2012.04.001
  57. 57Mangold, M., Österbring, M., & Wallbaum, H. (2015). Handling data uncertainties when using Swedish energy performance certificate data to describe energy usage in the building stock. Energy and Buildings, 102, 328336. DOI: 10.1016/j.enbuild.2015.05.045
  58. 58Mathew, P. A., Dunn, L. N., Sohn, M. D., Mercado, A., Custudio, C., & Walter, T. (2015). Big-data for building energy performance: Lessons from assembling a very large national database of building energy use. Applied Energy, 140, 8593. DOI: 10.1016/j.apenergy.2014.11.042
  59. 59Murphy, L. (2014). The influence of the Energy Performance Certificate: The Dutch case. Energy Policy, 67, 664672. DOI: 10.1016/j.enpol.2013.11.054
  60. 60National Statistics. (2019). English Housing Survey 2017 to 2018: Energy. London: UK Government. Retrieved from https://www.gov.uk/government/statistics/english-housing-survey-2017-to-2018-energy
  61. 61NHER. (2009). Energy Performance Certificates: Seizing the Opportunity (Report 1). Milton Keynes: NHER.
  62. 62Palmer, J., Pane, G., Bell, M., & Wingfield, J. (2011). Comparing Primary and Secondary Terms Analysis and Renormalisation (PStar) Test and Co-Heating Test Results (Final Report No. BD2702). London: Department for Communities and Local Government (DCLG).
  63. 63Pascuas, R. P., Paoletti, G., & Lollini, R. (2017). Impact and reliability of EPCs in the real estate market. Energy Procedia, 140, 102114. DOI: 10.1016/j.egypro.2017.11.127
  64. 64Pereira, P. F., & Ramos, N. M. M. (2018). Detection of occupant actions in buildings through change point analysis of in-situ measurements. Energy and Buildings, 173, 365377. DOI: 10.1016/j.enbuild.2018.05.050
  65. 65Rabl, A., & Rialhe, A. (1992). Energy signature models for commercial buildings: test with measured data and interpretation. Energy and Buildings, 19(2), 143154. DOI: 10.1016/0378-7788(92)90008-5
  66. 66Rafols, I. (2015). Performance Gap and its Assessment Methodology in Built2Spec Project. Retrieved from https://built2spec-project.eu/wp-content/uploads/2016/06/Built2Spec_Performance_gap_assessment_methodology_part_1.pdf
  67. 67Republique Française. (2012). Transposition complète de la directive 2010/31/UE du Parlement européen et du Conseil sur la performance énergétique des bâtiments. Paris: Legifrance.
  68. 68Sakuma, Y., & Nishi, H. (2019). Estimation of building thermal performance using simple sensors and air conditioners. Energies, 12(15), art. 2950. DOI: 10.3390/en12152950
  69. 69Sharpe, T., Farren, P., Howieson, S., Tuohy, P., & McQuillan, J. (2015). Occupant interactions and effectiveness of natural ventilation strategies in contemporary new housing in Scotland, UK. International Journal of Environmental Research and Public Health, 12(7), 84808497. DOI: 10.3390/ijerph120708480
  70. 70Smart Energy Code Company. (2013). Smart Energy Code. London: Smart Energy Code Company.
  71. 71SMHI. (2018). SMHI ENERGI-INDEX. Norrkoping. Retrieved from https://www.smhi.se/polopoly_fs/1.3499!/Menu/general/extGroup/attachmentColHold/mainCol1/file/Produktexempel%20f%C3%B6rklaring%20Energi%20Index%20151026.pdf
  72. 72Smith, P. D. (2016). Smart thermostats lessons learned. Paper presented at the 2016 ACEEE Summer Study on Energy Efficiency in Buildings, CA, USA.
  73. 73Stamp, S., Altamirano-Medina, H., & Lowe, R. (2017). Measuring and accounting for solar gains in steady state whole building heat loss measurements. Energy and Buildings, 153, 168178. DOI: 10.1016/j.enbuild.2017.06.063
  74. 74Subbarao, K., Burch, J., Hancock, C., Lekov, A., & Balcomb, J. (1988). Short-Term Energy Monitoring (STEM): Application of the PSTAR Method to a Residence in Fredericksburg, Virginia. Golden: Solar Energy Research Institute. DOI: 10.2172/6734885
  75. 75Summerfield, A. J., Oreszczyn, T., Hamilton, I. G., Shipworth, D., Huebner, G. M., Lowe, R. J., & Ruyssevelt, P. (2015). Empirical variation in 24-h profiles of delivered power for a sample of UK dwellings: Implications for evaluating energy savings. Energy and Buildings, 88, 193202. DOI: 10.1016/j.enbuild.2014.11.075
  76. 76Thébault, S., & Bouchié, R. (2018). Refinement of the ISABELE method regarding uncertainty quantification and thermal dynamics modelling. Energy and Buildings, 178, 182205. DOI: 10.1016/j.enbuild.2018.08.047
  77. 77Thomson, H., & Snell, C. (2013). Quantifying the prevalence of fuel poverty across the European Union. Energy Policy, 52, 563572. DOI: 10.1016/j.enpol.2012.10.009
  78. 78UNFCCC. (2015). Paris Agreement (FCCCC/CP/2015/L. 9/Rev. 1). Bonn: United Nations Framework Convention on Climate Change (UNFCCC).
  79. 79Williamson, T., Soebarto, V., Bennetts, H., & Radford, A. (2006). House/home energy rating schemes/systems (HERS). Paper presented at the Proceedings of the 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006.
  80. 80Yang, R., & Newman, M. W. (2013). Learning from a learning thermostat: lessons for intelligent systems for the home. Paper presented at the Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013. DOI: 10.1145/2493432.2493489
  81. 81Zero Carbon Hub. (2010). Closing the Gap between Designed and Built Performance. Retrieved from http://www.zerocarbonhub.org/sites/default/files/resources/reports/Carbon_Compliance_Topic%204_Closing_the_Gap_Between_DvAB.pdf
  82. 82Zhou, S., & Brown, M. A. (2017). Smart meter deployment in Europe: A comparative case study on the impacts of national policy schemes. Journal of Cleaner Production, 144, 2232. DOI: 10.1016/j.jclepro.2016.12.031
  83. 83Zirngibl, J., Visier, J. C., & Arkesteijn, K. (2009). EN 15217: Energy Performance of Buildings—Methods for Expressing Energy Performance and for the Energy Certification of Buildings. Retrieved from http://www.buildup.eu/sites/default/files/content/P155_EN_CENSE_EN_15217.pdf
DOI: https://doi.org/10.5334/bc.7 | Journal eISSN: 2632-6655
Language: English
Submitted on: Jul 29, 2019
Accepted on: Jan 25, 2020
Published on: Mar 5, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Jenny Crawley, Eoghan McKenna, Virginia Gori, Tadj Oreszczyn, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.