References
- 1Bauermann, K. (2016). German Energiewende and the heating market—Impact and limits of policy. Energy Policy, 94, 235–246. DOI: 10.1016/j.enpol.2016.03.041
- 2Berger, M., & Worlitschek, J. (2019). The link between climate and thermal energy demand on national level: A case study on Switzerland. Energy and Buildings, 202. DOI: 10.1016/j.enbuild.2019.109372
- 3Bergsdal, H., Brattebø, H., Bohne, R. A., & Müller, D. B. (2007). Dynamic material flow analysis for Norway’s dwelling stock. Building Research & Information, 35(5), 557–570. DOI: 10.1080/09613210701287588
- 4Bettgenhauser, K., & Hidalgo, A. (2013). Integrated assessment modelling for building sectors—A technical, economic and ecological analysis for Germany and the EU until 2050. In Proceedings of the ECEEE 2013 Summer Study: Rethink, Renew, Restart (pp. 1365–1376).
- 5Charlier, D., & Risch, A. (2012). Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector. Energy Policy, 46, 170–184. DOI: 10.1016/j.enpol.2012.03.048
- 6Christenson, M., Manz, H., & Gyalistras, D. (2006). Climate warming impact on degree-days and building energy demand in Switzerland. Energy Conversion and Management, 47(6), 671–686. DOI: 10.1016/j.enconman.2005.06.009
- 7Drouilles, J., Lufkin, S., & Rey, E. (2017). Energy transition potential in peri-urban dwellings: Assessment of theoretical scenarios in the Swiss context. Energy and Buildings, 148, 379–390. DOI: 10.1016/j.enbuild.2017.05.033
- 8Economidou, M., Atanasiu, B., Despret, C., Maio, J., Nolte, I., Rapf, O., Laustsen, J., Ruyssevelt, P., Staniaszek, D., Strong, D., & Zinetti, S. (2011). Europe’s buildings under the microscope. A country-by-country review of the energy performance of buildings. Retrieved from
http://bpie.eu/publication/europes-buildings-under-the-microscope/ - 9Filchakova, N., Wilke, U., & Robinson, D. (2009). Energy modelling of city housing stock and its temporal evolution, iji, 2(4), 0–1.
- 10Firth, S. K., Lomas, K. J., & Wright, A. J. (2010). Targeting household energy-efficiency measures using sensitivity analysis. Building Research & Information, 38(1), 25–41. DOI: 10.1080/09613210903236706
- 11FOEN. (2018a). Climate policy: Buildings. Retrieved from
https://www.bafu.admin.ch/bafu/en/home/topics/climate/info-specialists/climate-policy/buildings.html - 12FOEN. (2018b). Swiss climate policy. Retrieved from
https://www.bafu.admin.ch/bafu/en/home/topics/climate/info-specialists/climate-policy.html - 13FOEN. (2019a). 2050 climate target. Retrieved from
https://www.bafu.admin.ch/bafu/en/home/topics/climate/info-specialists/climate-target2050.html - 14FOEN. (2019b). Switzerland’s greenhouse gas inventory 1990–2017. National inventory report. Retrieved from
https://www.bafu.admin.ch/bafu/en/home.html - 15FSO. (2000). Statistisches Jahrbuch der Schweiz 2000. Retrieved from
https://www.bfs.admin.ch/ - 16FSO. (2017). Szenarien zur Entwicklung der Haushalte 2017–2045. su-d-01.03.03.02. Retrieved from
https://www.bfs.admin.ch/ - 17FSO. (2018a). Annual change in the number of residences by type of activity—Progression. su-e-09.01.01. Retrieved from
https://www.bfs.admin.ch/bfs/ - 18FSO. (2018b). Demographic balance of the permanent resident population, 1861–2017. su-e-01.02.04.05. Retrieved from
https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/stand-entwicklung.assetdetail.5886182.html - 19FSO. (2018c). Durchschnittliche Wohnfläche der bewohnten Wohnungen nach Altersklassen der Haushaltsmitglieder, nach Kanton. je-d-09.03.02.26. Retrieved from
https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-datenbanken/tabellen.assetdetail.6286397.html - 20FSO. (2019a). Annual change in the number of residences by type of activity and by canton. su-e-09.01.03. Retrieved from
https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/tables.assetdetail.9246317.html - 21FSO. (2019b). Bewohnte Wohnungen nach Bauperiode und Bewohnertyp. je-d-09.03.02.01.05. Retrieved from
https://www.bfs.admin.ch/bfs/ - 22Heeren, N., Jakob, M., Martius, G., Gross, N., & Wallbaum, H. (2013). A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 20, 45–56. DOI: 10.1016/j.rser.2012.11.064
- 23HSSO. (2012a). Haushaltungen nach Kantonen 1850–1990: mittlere Personenzahl pro Haushaltung. B.6b. Retrieved from
https://hsso.ch/2012/b/6b - 24HSSO. (2012b). Wohnbevölkerung nach Kantonen 1671–1844 (kantonale Zählungen) und 1850–1990 (eidgenössische Zählungen): absolute Zahlen. B.1a. Retrieved from
https://hsso.ch/de/2012/b/1a - 25IPCC. (2018). Global warming of 1.5°C. Intergovernmental Panel on Climate Change (IPCC). Retrieved February 2020 from
http://www.ipcc.ch/report/sr15/ - 26Khoury, J., Alameddine, Z., & Hollmuller, P. (2017). Understanding and bridging the energy performance gap in building retrofit. Energy Procedia, 122, 217–222. DOI: 10.1016/j.egypro.2017.07.348
- 27Kohler, N. (2017). From the design of green buildings to resilience management of building stocks. Building Research & Information, 46(5), 578–593. DOI: 10.1080/09613218.2017.1356122
- 28Kornmann, M., & Queisser, A. (2012). Service life of the building stock of Switzerland. Mauerwerk: European Journal of Masonry, 16(4), 210–215. DOI: 10.1002/dama.201290053
- 29Kost, M. (2006). Langfristige Energieverbrauchs-und CO2-Reduktionspotenziale im Wohngebäudesektor der Schweiz. ETH Zurich.
- 30Mavromatidis, G., Orehounig, K., Richner, P., & Carmeliet, J. (2016). A strategy for reducing CO2 emissions from buildings with the Kaya identity—A Swiss energy system analysis and a case study. Energy Policy, 88, 343–354. DOI: 10.1016/j.enpol.2015.10.037
- 31Meijer, F., Itard, L., & Sunikka-Blank, M. (2010). Comparing European residential building stocks: Performance, renovation and policy opportunities. Building Research & Information, 37(5–6), 533–551. DOI: 10.1080/09613210903189376
- 32Minergie. (2020). Homepage. Retrieved from
https://www.minergie.ch/ - 33Müller, A. (2015).
Energy demand assessment for space conditioning and domestic hot water: a case study for the Austrian building stock (doctoral dissertation, Technischen Universität Wien). - 34Müller, D. B. (2006). Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. Ecological Economics, 59(1), 142–156. DOI: 10.1016/j.ecolecon.2005.09.025
- 35Müller, D. B., Liu, G., Lovik, A. N., Modaresi, R., Pauliuk, S., Steinhoff, F. S., & Brattebo, H. (2013). Carbon emissions of infrastructure development. Environmental Science and Technology, 47(20), 11739–11746. DOI: 10.1021/es402618m
- 36Naber, E., Volk, R., & Schultmann, F. (2017). From the building level energy performance assessment to the national level: How are uncertainties handled in building stock models. Procedia Engineering, 180, 1443–1452. DOI: 10.1016/j.proeng.2017.04.307
- 37Pauliuk, S., & Heeren, N. (2020). ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures. Journal of Industrial Ecology, 24(3), 446–458. DOI: 10.1111/jiec.12952
- 38Pauliuk, S., Sjöstrand, K., & Müller, D. B. (2013). Transforming the Norwegian dwelling stock to reach the 2 degrees Celsius climate target. Journal of Industrial Ecology, 17(4), 542–554. DOI: 10.1111/j.1530-9290.2012.00571.x
- 39Pfeiffer, A., Koschenz, M., & Wokaun, A. (2005). Energy and building technology for the 2000-W Society—Potential of residential buildings in Switzerland. Energy and Buildings, 37(11), 1158–1174. DOI: 10.1016/j.enbuild.2005.06.018
- 40Rey, U., & Brenner, M. (2016). Bauliche Erneuerung in Zahlen—Erneuerung von Wohnbauten in der Stadt Zürich 2000–2015. Technical Report. Statistitik Stadt Zürich.
- 41Sandberg, N. H., Sartori, I., Vestrum, M. I., & Brattebø, H. (2016). Explaining the historical energy use in dwelling stocks with a segmented dynamic model: Case study of Norway 1960–2015. Energy and Buildings, 132, 141–153. DOI: 10.1016/j.enbuild.2016.05.099
- 42Sandberg, N. H., Sartori, I., Vestrum, M. I., & Brattebø, H. (2017). Using a segmented dynamic dwelling stock model for scenario analysis of future energy demand: The dwelling stock of Norway 2016–2050. Energy and Buildings, 146, 220–232. DOI: 10.1016/j.enbuild.2017.04.016
- 43Schneider, S., Hollmuller, P., Le Strat, P., Khoury, J., Patel, M., & Lachal, B. (2017). Spatial–temporal analysis of the heat and electricity demand of the Swiss building stock. Frontiers in Built Environment, 3. DOI: 10.3389/fbuil.2017.00053
- 44Serrenho, A. C., Drewniok, M., Dunant, C., & Allwood, J. M. (2019). Testing the greenhouse gas emissions reduction potential of alternative strategies for the English housing stock. Resource, Conservation & Recycling, 144, 267–275. DOI: 10.1016/j.resconrec.2019.02.001
- 45SFOE. (2016). Erweiterung des Gebäudeparkmodells gemäss SIA-Effizienzpfad Energie. Retrieved from
https://www.bfe.admin.ch/bfe/de/ - 46SFOE. (2018a). Analyse des schweizerischen Energieverbrauchs 2000–2017 nach Verwendungszwecken. Retrieved from
https://www.bfe.admin.ch/bfe - 47SFOE. (2018b). Energy strategy 2050. Retrieved from
https://www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050.html - 48SFOE. (2019). Schweizerische Gesamenergiestatistik 2018—Datentabellen. 805.006.18 d/f. Retrieved from
www.bfe.admin.ch/statistiken - 49SIA. (2007). Norme SIA 416/1:2007. Indices de calcul pour les installations du bâtiment: Dimensions des éléments de construction, grandeurs de référence, indices pour la physique du bâtiment, l’énergie et les installations du bâtiment. SIA.
- 50Siller, T., Kost, M., & Imboden, D. (2007). Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector. Energy Policy, 35(1), 529–539. DOI: 10.1016/j.enpol.2005.12.021
- 51Stengel, J. (2014). Akteursbasierte Simulation der energetischen Modernisierung des Wohngebäudebestands in Deutschland (Vol. 6). KIT.
- 52Streicher, K. N., Padey, P., Parra, D., Bürer, M. C., Schneider, S., & Patel, M. K. (2019). Analysis of space heating demand in the Swiss residential building stock: Element-based bottom-up model of archetype buildings. Energy and Buildings, 184, 300–322. DOI: 10.1016/j.enbuild.2018.12.011
- 53Stulz, R., Tanner, S., & Sigg, R. (2011).
Swiss 2000-Watt Society: A sustainable energy vision for the future . In F. P. Sioshansi (Ed.), Energy, sustainability and the environment (pp. 477–496). Elsevier. DOI: 10.1016/B978-0-12-385136-9.10016-6 - 54UN. (2019). World population prospects 2019. Retrieved from
https://population.un.org/ - 55Van der Voet, E., Kleijn, R., Huele, R., Ishikawa, M., & Verkuijlen, E. (2002). Predicting future emissions based on characteristics of stocks. Ecological Economics, 41(2), 223–234. DOI: 10.1016/S0921-8009(02)00028-9
- 56Vásquez, F., Løvik, A. N., Sandberg, N. H., & Müller, D. B. (2016). Dynamic type–cohort–time approach for the analysis of energy reductions strategies in the building stock. Energy and Buildings, 111, 37–55. DOI: 10.1016/j.enbuild.2015.11.018
- 57Wallbaum, H., Jakob, M., Heeren, N., Gabathuler, M., Martius, G., & Gross, N. (2009). Gebäudeparkmodell Schweiz–SIA Effizienzpfad Energie, Dienstleistungs-und Wohngebäude. Bern.
- 58Wang, D., Landolt, J., Mavromatidis, G., Orehounig, K., & Carmeliet, J. (2018). CESAR: A bottom-up building stock modelling tool for Switzerland to address sustainable energy transformation strategies. Energy and Buildings, 169, 9–26. DOI: 10.1016/j.enbuild.2018.03.020
