References
- AEMET. (2024). Valores climatológicos normales. Barcelona Aeropuerto. Agencia Estatal de Meteorologia (AEMET).
http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=0076&k=cat - Ajuntament de l’Hospitalet de Llobegrat. (2024). Inventari d’arbres de la ciutat. Portal de Dades Obertes.
https://goo.su/UE8aV - Aleksandrowicz, O., Zur, S., Lebendiger, Y., & Lerman, Y. (2020). Shade maps for prioritizing municipal microclimatic action in hot climates: Learning from Tel Aviv-Yafo. Sustainable Cities and Society, 53(August 2019), 101931. 10.1016/j.scs.2019.101931
- AMB. (2022). Indice de vulnerabilidad al cambio climatico (IVAC). Area Metropolitana de Barcelona (AMB).
https://www.amb.cat/es/web/area-metropolitana/dades-espacials/detall/-/serveidigital/index-de-vulnerabilitat-al-canvi-climatic--ivac-/13903812/11692 - AMB. (2024). Cartography geoportal. Area Metropolitana de Barcelona (AMB).
https://geoportalcartografia.amb.cat/AppGeoportalCartografia2/index.html?locale=en - Banfi, A., Tatti, A., Ferrando, M., Fustinoni, D., Zanghirella, F., & Causone, F. (2022). An experimental technique based on globe thermometers for the measurement of mean radiant temperature in urban settings. Building and Environment, 222(June), 109373. 10.1016/j.buildenv.2022.109373
- Briegel, F., Makansi, O., Brox, T., Matzarakis, A., & Christen, A. (2023). Modelling long-term thermal comfort conditions in urban environments using a deep convolutional encoder–decoder as a computational shortcut. Urban Climate, 47, 101359. 10.1016/j.uclim.2022.101359
- Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13(3–4), 373–384. 10.1016/S1364-8152(98)00042-5
- Busquets, J. (2005). Barcelona: The urban evolution of a compact city. Nicolodi.
- Calcerano, F., & Martinelli, L. (2016). Numerical optimisation through dynamic simulation of the position of trees around a stand-alone building to reduce cooling energy consumption. Energy and Buildings, 112, 234–243. 10.1016/j.enbuild.2015.12.023
- Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., … Ha, M. (2023). IPCC, 2023: Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee & J. Romero (eds.)]. Intergovernmental Panel on Climate Change (IPCC). 10.59327/IPCC/AR6-9789291691647
- Climate.OneBuilding.Org. (2024). Repository of free climate data for building performance simulation.
http://climate.onebuilding.org/ - Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P.-A., & Samsó, M. (2022). The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth System Dynamics, 13(1), 321–340. 10.5194/esd-13-321-2022
- Emmanuel, R., & Fernando, H. (2007). Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research, 34(3), 241–251. 10.3354/cr00694
- Erell, E., Pearlmutter, D., & Williamson, T. (2011). Urban microclimate. Designing the spaces between buildings. Earthscan.
- Evola, G., Costanzo, V., Magrì, C., Margani, G., Marletta, L., & Naboni, E. (2020). A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues. Energy and Buildings, 216, 109946. 10.1016/j.enbuild.2020.109946
- Evola, G., Costanzo, V., Marletta, L., Nocera, F., Detommaso, M., & Urso, A. (2021). An investigation on the radiant heat balance for different urban tissues in Mediterranean climate: A case study. Journal of Physics: Conference Series, 2042(1), 012046. 10.1088/1742-6596/2042/1/012046
- Gál, C. V., & Kántor, N. (2020). Modeling mean radiant temperature in outdoor spaces: A comparative numerical simulation and validation study. Urban Climate, 32(April 2019), 100571. 10.1016/j.uclim.2019.100571
- Garcia-Nevado, E., Duport, N., Bugeat, A., & Beckers, B. (2021). Benefits of street sun sails to limit building cooling needs in a mediterranean city. Building and Environment, 187(August 2020), 107403. 10.1016/j.buildenv.2020.107403
- Hatvani-Kovacs, G., Bush, J., Sharifi, E., & Boland, J. (2018). Policy recommendations to increase urban heat stress resilience. Urban Climate, 25(November 2017), 51–63. 10.1016/j.uclim.2018.05.001
- Ho, H. C., Tong, S., Zhou, Y., Hu, K., Yang, X., & Yang, Y. (2025). Mapping heat vulnerability and heat risk for neighborhood health risk management in urban environment? Challenges and opportunities. Current Environmental Health Reports, 12(1), 14. 10.1007/s40572-025-00478-7
- Johansson, E., Thorsson, S., Emmanuel, R., & Krüger, E. (2014). Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban Climate, 10(P2), 346–366. 10.1016/j.uclim.2013.12.002
- Kántor, N., & Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Open Geosciences, 3(1), 90–100. 10.2478/s13533-011-0010-x
- Koch, K., Ysebaert, T., Denys, S., & Samson, R. (2020). Urban heat stress mitigation potential of green walls: A review. Urban Forestry & Urban Greening, 55(August), 126843. 10.1016/j.ufug.2020.126843
- Lau, K. K.-L., Lindberg, F., Rayner, D., & Thorsson, S. (2015). The effect of urban geometry on mean radiant temperature under future climate change: A study of three European cities. International Journal of Biometeorology, 59(7), 799–814. 10.1007/s00484-014-0898-1
- Lee, H., Mayer, H., & Kuttler, W. (2020). Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside E–W urban street canyons under Central European conditions. Urban Forestry & Urban Greening, 48(June 2019), 126558. 10.1016/j.ufug.2019.126558
- Lindberg, F., Grimmond, C., Bernard, J., Gabey, A., Jarvi, L., Kent, C. W., … Ward, H. C. (2019). Urban multi-scale environmental predictor (UMEP) manual.
https://umep-docs.readthedocs.io/ - Lindberg, F., & Grimmond, C. S. B. (2011). The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theoretical and Applied Climatology, 105(3–4), 311–323. 10.1007/s00704-010-0382-8
- Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., … Zhang, Z. (2018). Urban multi-scale environmental predictor (UMEP): An integrated tool for city-based climate services. Environmental Modelling & Software, 99, 70–87. 10.1016/j.envsoft.2017.09.020
- Lindberg, F., Holmer, B., & Thorsson, S. (2008). SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. International Journal of Biometeorology, 52(7), 697–713. 10.1007/s00484-008-0162-7
- Lopez-Ordonez, C., Garcia-Nevado, E., Coch, H., & Morganti, M. (2024). Open space heat stress in social housing districts: The role of trees depending on urban form. In PLEA 2024: (Re) thinking resilience: The book of proceedings. Proceedings of 37th PLEA Conference,
26–28 June 2024 Wroclaw, Poland (pp. 237–242).PLEA . - Mahdavinejad, M., Shaeri, J., Nezami, A., & Goharian, A. (2024). Comparing universal thermal climate index (UTCI) with selected thermal indices to evaluate outdoor thermal comfort in traditional courtyards with BWh climate. Urban Climate, 54(January), 101839. 10.1016/j.uclim.2024.101839
- Maragno, D., Dalla Fontana, M., & Musco, F. (2020). Mapping heat stress vulnerability and risk assessment at the neighborhood scale to drive urban adaptation planning. Sustainability, 12(3), 1056. 10.3390/su12031056
- Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. International Journal of Biometeorology, 51(4), 323–334. 10.1007/s00484-006-0061-8
- Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, 54(2), 131–139. 10.1007/s00484-009-0261-0
- Mayer, H., Holst, J., Dostal, P., Imbery, F., & Schindler, D. (2008). Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorologische Zeitschrift, 17(3), 241–250. 10.1127/0941-2948/2008/0285
- Ministerio de Transportes Movilidad y Agenda Urbana. (2023). Atlas de la Vulnerabilidad Urbana.
https://atlasvulnerabilidadurbana.mitma.es/ - Mutani, G., & Beltramino, S. (2022). Geospatial assessment and modeling of outdoor thermal comfort at urban scale. International Journal of Heat and Technology, 40(4), 871–878. 10.18280/ijht.400402
- Palme, M., Carrasco, C., Privitera, R., & La Rosa, D. (2021). Building performance simulation to support tree planting for cooling need reduction: A machine learning approach. Building Simulation Conference Proceedings, 721–728. 10.26868/25222708.2021.30196
- Palme, M., Privitera, R., & La Rosa, D. (2020). The shading effects of green infrastructure in private residential areas: Building performance simulation to support urban planning. Energy and Buildings, 229, 110531. 10.1016/j.enbuild.2020.110531
- Roudsari, M., Pak, M., & Viola, A. (2013). Ladybug: A parametric environmental plugin for Grasshopper to help designers create an environmentally-conscious design. Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 3128–3135. 10.26868/25222708.2013.2499
- Salvati, A., Kolokotroni, M., Kotopouleas, A., Watkins, R., Giridharan, R., & Nikolopoulou, M. (2022). Impact of reflective materials on urban canyon albedo, outdoor and indoor microclimates. Building and Environment, 207(PB), 108459. 10.1016/j.buildenv.2021.108459
- Serra, C., Lana, X., Martínez, M.-D., Arellano, B., Roca, J., & Biere, R. (2024). Summer heatwaves trends and hotspots in the Barcelona Metropolitan Region (1914–2020). Theoretical and Applied Climatology, 155(6), 4681–4702. 10.1007/s00704-024-04912-y
- Sola-Caraballo, J., Lopez-Cabeza, V. P., Roa-Fernández, J., Rivera-Gomez, C., & Galan-Marin, C. (2024). Assessing and upgrading urban thermal resilience of a Spanish MoMo neighbourhood over the span of 1960–2080. Building and Environment, 256(March), 111485. 10.1016/j.buildenv.2024.111485
- Sola-Caraballo, J., Serrano-Jiménez, A., Rivera-Gomez, C., & Galan-Marin, C. (2025). Multi-criteria assessment of urban thermal hotspots: A GIS-based remote sensing approach in a Mediterranean climate city. Remote Sensing, 17(2), 231. 10.3390/rs17020231
- Staiger, H., & Matzarakis, A. (2020). Accuracy of mean radiant temperature derived from active and passive radiometry. Atmosphere, 11(8), 805. 10.3390/atmos11080805
- Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology, 27(14), 1983–1993. 10.1002/joc.1537
- Thorsson, S., Rocklöv, J., Konarska, J., Lindberg, F., Holmer, B., Dousset, B., & Rayner, D. (2014). Mean radiant temperature—A predictor of heat related mortality. Urban Climate, 10(P2), 332–345. 10.1016/j.uclim.2014.01.004
- UNDRR. (2017). The Sendai framework terminology on disaster risk reduction: ‘Vulnerability’. United Nations Office for Disaster Risk Reduction (UNDRR).
https://www.undrr.org/terminology/vulnerability - Vanos, J. K., Rykaczewski, K., Middel, A., Vecellio, D. J., Brown, R. D., & Gillespie, T. J. (2021). Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International Journal of Biometeorology, 65(6), 967–983. 10.1007/s00484-021-02131-y
- Yang, D., Busquets, J., & Keller, M. (2019). Urban grids: Handbook for city design. ORO.
