References
- Alrasheed, M., & Mourshed, M. (2023). Domestic overheating risks and mitigation strategies: The state-of-the-art and directions for future research. Indoor and Built Environment, 32(6). 10.1177/1420326X231153856
- Andersen, R. V., Toftum, J., Andersen, K. K., & Olesen, B. W. (2009). Survey of occupant behaviour and control of indoor environment in Danish dwellings. Energy and Buildings, 41(1), 11–16. 10.1016/j.enbuild.2008.07.004
- Baborska-Narożny, M., Grudzińska, M., & Bandurski, K. (2023a). Capturing building fabric thermal performance and solar heat gains through a whole house heat loss test—An in-situ study in Poland. Journal of Physics: Conference Series, 2654,
012118 . 10.1088/1742-6596/2654/1/012118 - Baborska-Narożny, M., Bandurski, K., & Grudzińska, M. (2023b). Energy use, indoor environment parameters and residents’ engagement in indoor environment control in energy efficient homes—Field study in Poland. 18th Healthy Buildings Europe Conference, Aachen, Germany,
11–14 June 2023 (pp. 697–704).https://www.researchgate.net/publication/376602336_Energy_use_indoor_environment_parameters_and_residents%27_engagement_in_indoor_environment_control_in_energy_efficient_homes_-field_study_in_Poland - Baborska-Narożny, M., Grudzińska, M., & Bandurski, K. (2023c). To shade or not to shade (and how)? Annual heating energy balance and internal temperature in low energy houses in Wrocław, Poland. Journal of Physics: Conference Series, 2654,
012067 . 10.1088/1742-6596/2654/1/012067 - Baborska-Narożny, M., Grudzińska, M., Bandurski, K., & Kostka, M. (2024).
Free running mode adaptive thermal comfort in low energy houses in Poland—The impact of room location and orientation on overheating severity . In Littlewood, J. R., Jain, L., & Howlett, R. J. (Eds.), Sustainability in energy and buildings 2023 (pp. 651–659). Springer.https://link.springer.com/chapter/10.1007/978-981-99-8501-2_56 - Baborska-Narożny, M., Stevenson, F., & Grudzińska, M. (2017). Overheating in retrofitted flats: Occupant practices, learning and interventions. Building Research & Information, 45(1–2), 40–59. 10.1080/09613218.2016.1226671
- Bandurski, K. (2021).
Wpływ użytkowników na bilans energetyczny budynków mieszkalnych—Badania i modelowanie (Doctoral dissertation, Poznan University of Technology) (in Polish).https://sin.put.poznan.pl/dissertations/details/d2913 - Bavaresco, M. V., & Ghisi, E. (2018). Influence of user interaction with internal blinds on the energy efficiency of office buildings. Energy and Buildings,
166 . 10.1016/j.enbuild.2018.02.011 - Bellia, L., Marino, C., Minichiello, F., & Pedace, A. (2014). An overview on solar shading systems for buildings. Energy Procedia, 62, 309–317. 10.1016/j.egypro.2014.12.392
- Brown, C. (2023).
Solar shading design and implementation in UK housing as a tool for advancing sustainable development . In Walker, T., Cucuzzella, C., Goubran, S., & Geith, R. (Eds.), The role of design, construction, and real estate in advancing the sustainable development goals (pp. 63–83). Palgrave Macmillan. 10.1007/978-3-031-28739-8_5 - Choi, K., Park, S., Joe, J., Kim, S.-I., Jo, J.-H., Kim, E.-J., & Cho, Y.-H. (2023). Review of infiltration and airflow models in building energy simulations for providing guidelines to building energy modeler. Renewable and Sustainable Energy Reviews, 181,
113327 . 10.1016/j.rser.2023.113327 - CIBSE. (2017). TM59: Design methodology for the assessment of overheating risk in homes. Chartered Institution of Building Services Engineers (CIBSE).
cibse.org - Dar, U. I., Georges, L., Sartori, I., & Nobvkovic, V. (2012). Influence of user-behavior on the performance of the building and the energy supply system: Investigation of heating. Proceedings of BSO Conference 2012: 1st Conference of IBPSA-England, Loughborough, UK (pp. 364–371).
https://publications.ibpsa.org/proceedings/bso/2012/papers/bso2012_5C3.pdf - Day, J. K., McIlvennie, C., Brackley, C., Tarantini, M., Piselli, C., Hahn, J., O’Brien, W., Rajus V. S., De Simone, M., Kjærgaard, M. B., Pritoni, M., Schlüter, A., Peng, Y., Schweiker, M., Fajilla, G., Becchio, C., Fabi, V., Spigliantini, G., Derbas, G., & Pisello, A. L. (2020). A review of select human–building interfaces and their relationship to human behavior, energy use and occupant comfort. Building and Environment, 178,
106920 . 10.1016/j.buildenv.2020.106920 - Eguía-Oller, P., Martínez-Mariño, S., Granada-Álvarez, E., & Febrero-Garrido, L. (2021). Empirical validation of a multizone building model coupled with an air-flow network under complex realistic situations. Energy Buildings,
249 . 10.1016/j.enbuild.2021.111197 - Elsland, R., Peksen, I., & Wietschel, M. (2014). Are internal heat gains underestimated in thermal performance evaluation of buildings? Energy Procedia,
62 . 10.1016/j.egypro.2014.12.364 - Feist, W., & Schnieders, J. (2009). Energy efficiency—A key to sustainable housing. European Physical Journal Special Topics, 176, 141–153. 10.1140/epjst/e2009-01154-y
- Firląg, S., Yazdanian, M., Curcija, C., Kohler, C., Vidanovic, S., Hart, R., & Czarnecki, S. (2015). Control algorithms for dynamic windows for residential buildings. Energy and Buildings, 109, 157–173. 10.1016/j.enbuild.2015.09.069
- Ford, B., Mumovic, D., & Rawal, R. (2022). Alternatives to air-conditioning: Policies, design, technologies, behaviours. Buildings & Cities, 3(1), 433–447. 10.5334/bc.256
- Grudzińska, M., Baborska-Narożny, M., & Bandurski, K. (2025). Determining ‘as built’ heat loss coefficient—The impact of modelling methods of solar radiation distribution. Journal of Building Performance Simulation. 10.1080/19401493.2025.2511814
- Gupta, R., Kapsali, M., & Howard, A. (2018). Evaluating the influence of building fabric, services and occupant related factors on the actual performance of low energy social housing dwellings in UK. Energy & Buildings, 174, 548–562. 10.1016/j.enbuild.2018.06.057
- Hensen, J. L. M., & Djunaedy, E. (2005). Building simulation for making the invisible visible—Air flow in particular. Popiolek, Z. (Ed.), Proceedings of the International Conference on Energy Efficient Technologies in Indoor Environment,
29–30 September 2005 .Silesian Technical University .https://pure.tue.nl/ws/portalfiles/portal/2267389/731193239041671.pdf - Hensen, J. L. M., & Lamberts, R. (Eds.) (2019). Building performance simulation for design and operation. Routledge. 10.1201/9780429402296
- ISO. (2017). EN ISO 52016-1:2017: Energy performance of buildings—Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads—Part 1: Calculation procedure. International Organization for Standardization (ISO).
https://www.iso.org/standard/65696.html - Jensen Skarning, G., Hviid, C. A., & Svendsen, S. (2017). The effect of dynamic solar shading on energy, daylighting and thermal comfort in a nearly zero-energy loft room in Rome and Copenhagen. Energy and Buildings, 135, 302–311. 10.1016/j.enbuild.2016.11.053
- Karjalainen, S. (2019). Be active and consume less—The effect of venetian blind use patterns on energy consumption in single-family houses. Energy Efficiency, 12, 787–801. 10.1007/s12053-018-9693-x
- Kharchi, R., Benyoucef, B., Bartosievicz, Y., Seynhave, Jm., & Hemidi, A. (2012). The effect of solar heating gain on energetic thermal consumption of housing. Procedia Engineering, 33, 485–491. 10.1016/j.proeng.2012.01.1228
- Lu, Y., Dong, J., & Liu, J. (2020). Zonal modelling for thermal and energy performance of large space buildings: A review. Renewable and Sustainable Energy Reviews, 133,
110241 . 10.1016/j.rser.2020.110241 - Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34, 563–572. 10.1016/S0378-7788(02)00006-3
- Nicoletti, F., Carpino, C., Cucumo, A. M., & Arcuri, N. (2020). The control of venetian blinds: A solution for reduction of energy consumption preserving visual comfort. Energies, 13(7),
1731 . 10.3390/en13071731 - Niknia, S., & Rashed-Ali, H. (2024). Analyzing energy consumption due to occupant interaction with manual and automatic window blinds in multiple climates. Journal of Building Engineering,
90 . 10.1016/j.jobe.2024.109506 - Obrecht, T. P., Premrov, M., & Leskovar, V. Z. (2019). Influence of the orientation on the optimal glazing size for passive houses in different European climates (for non-cardinal directions). Solar Energy, 189, 15–25. 10.1016/j.solener.2019.07.037
- Passive House Institute. (2012). Passive House planning package. Passive House Institute.
https://passivehouse.com/04_phpp/04_phpp.htm - Polish Government. (2017). Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.
https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002285 - Roberts, B. M., Allinson, D., Diamond, S., Abel, B., Das Bhaumik, C., Khatami, N., & Lomas, K. J. (2019). Predictions of summertime overheating: Comparison of dynamic thermal models and measurements in synthetically occupied test houses. Building Services Engineering Research and Technology, 40, 512–552. 10.1177/0143624419847349
- Stazi, F., Naspi, F., & D’Orazio, M. (2017). A literature review on driving factors and contextual events influencing occupants’ behaviours in buildings. Building and Environment, 118, 40–66. 10.1016/j.buildenv.2017.03.021
- Strachan, P., Svehla, K., Heusler, I., & Kersken, M. (2015). Whole model empirical validation on a full-scale building. Journal of Building Performance Simulation, 9(4), 331–350. 10.1080/19401493.2015.1064480
- Taylor, J., McLeod, R., Petrou, G., Hopfe, C., Mavrogianni, A., Castaño-Rosa, R., Pelsmakers, S., & Lomas, K. (2023). Ten questions concerning residential overheating in Central and Northern Europe. Building and Environment,
234 . 10.1016/j.buildenv.2023.110154 - Toledo, L., Wright, A., & Cropper, P. (2024). Case study investigation of overheating in low-energy homes: Insights from a post-occupancy evaluation in England. Building Research & Information, 1–26. 10.1080/09613218.2024.2417274
- van Dijk, H., Siekman, M., & de Wilde, P. (2005). A monthly method for calculating energy performance in the context of European building regulations. 9th International IBPSA Conference Building Simulation, Montreal, QC, Canada.
https://publications.ibpsa.org/conference/paper/?id=bs2005_0255_262 - Vasquez, N. G., Rupp, R. F., Andersen, R. K., & Toftum, J. (2022). Occupants’ responses to window views, daylighting and lighting in buildings: A critical review. Building and Environment, 219,
109172 . 10.1016/j.buildenv.2022.109172 - Venturi, E., Ochs, F., & Dermentzis, G. (2023). Identifying the influence of user behaviour on building energy consumption based on model-based analysis of in-situ monitoring data. Journal of Building Engineering, 64,
105717 . 10.1016/j.jobe.2022.10571 - Verbruggen, S., Hertoge, J., Delghust, M., Laverge, J., & Janssens, A. (2020). The use of solar shading in a nearly zero-energy neighbourhood. E3S Web of Conferences,
172 . 10.1051/e3sconf/202017219003 - Yan, D., Hong, T., Dong, B., Mahdavi, A., D’Oca, S., Gaetani, I., & Feng, X. (2017). IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings. Energy and Buildings, 156, 258–270. 10.1016/j.enbuild.2017.09.084
- Yao, Y. (2014). An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Building and Environment,
71 . 10.1016/j.buildenv.2013.09.011 - Yin, R. (2013). Case study research, design and methods. Sage.
