Have a personal or library account? Click to login
Metrics for building component disassembly potential: a practical framework Cover

Metrics for building component disassembly potential: a practical framework

Open Access
|Aug 2025

References

  1. Akanbi, L. A., Oyedele, L. O., Akinade, O. O., Ajayi, A. O., Davila Delgado, M., Bilal, M., & Bello, S. A. (2018). Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resources, Conservation and Recycling, 129, 175186. 10.1016/j.resconrec.2017.10.026
  2. Akinade, O. O., Oyedele, L. O., Bilal, M., Ajayi, S. O., Owolabi, H. A., Alaka, H. A., & Bello, S. A. (2015). Waste minimisation through deconstruction: A BIM based deconstructability assessment score (BIM-DAS). Resources, Conservation and Recycling, 105, 167176. 10.1016/j.resconrec.2015.10.018
  3. Attia, S., Al-Obaidy, M., Mori, M., Campain, C., Giannasi, E., van Vliet, M., & Gasparri, E. (2024). Disassembly calculation criteria and methods for circular construction. Automation in Construction, 165, 105521. 10.1016/j.autcon.2024.105521
  4. Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307310. https://www.sciencedirect.com/science/article/pii/S0140673686908378
  5. Brady, S. R. (2015). Utilizing and adapting the Delphi method for use in qualitative research. International Journal of Qualitative Methods, 14(5), 237. 10.1177/1609406915621381
  6. Corona, B., Shen, L., Reike, D., Rosales Carreón, J., & Worrell, E. (2019). Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resources, Conservation and Recycling, 151, 104498. 10.1016/j.resconrec.2019.104498
  7. Cottafavax, D., & Ritzen, M. (2021). Circularity indicator for residential buildings: Addressing the gap between embodied impacts and design aspects. Resources, Conservation and Recycling, 164, 105120. 10.1016/j.resconrec.2020.105120
  8. Durmisevic, E., Ciftcioglu, Ő., & Anumba, C. J. (2003). Knowledge model for assessing disassembly potential of structures. Deconstruction and Materials Reuse Proceedings of the 11th Rinker International Conference. https://4darchitects.nl/download/TG39_2003_2.pdf
  9. Eberhardt, M., Charlotte, L., van Stijn, A., Kristensen Stranddorf, L., Birkved, M., & Birgisdottir, H. (2021). Environmental design guidelines for circular building components: The case of the circular building structure. Sustainability, 13(10), 5621. 10.3390/su13105621
  10. EC. (2021). Level(s) indicator 2.4: Design for deconstruction. European Commission (EC). https://susproc.jrc.ec.europa.eu/product-bureau/sites/default/files/2021-01/UM3_Indicator_2.4_v1.1_18pp.pdf
  11. ECORYS. (2014). Resource efficiency in the building sector. https://trinomics.eu/wp-content/uploads/2015/06/Resource-efficiency-in-the-building-sector.pdf
  12. Elementtisuunnittelu. (2020). Runkoliitosdetaljit. https://www.elementtisuunnittelu.fi/Download/24227/Runkoliitosdetaljit_2020.pdf
  13. EU. (2024). Directive 2024/1275. European Union (EU). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202401275&pk_keyword=Energy&pk_content=Directive
  14. Finnish Environment Institute. (2024). CO2data. Version 1.01.002. https://co2data.fi/
  15. Gallego-Schmid, A., Chen, H.-M., Sharmina, M., & Mendoza, J. M. F. (2020). Links between circular economy and climate change mitigation in the built environment. Journal of Cleaner Production, 260, 121115. 10.1016/j.jclepro.2020.121115
  16. Graubner, C.-A., & Reiche, K. (2001). Sustainable development in the building industry: An analysis and assessment tool for design of disassembly. In Gupta, S. M. (Ed.), Environmentally conscious manufacturing (Proceedings vol. 4193) (pp. 372381). SPIE. 10.1117/12.417283
  17. Häkkinen, T., & Kuittinen, M. (2020). Kohti vähähiilistä rakentamista—Opas arviointiin ja suunnitteluun. Rakennustieto Oy.
  18. Häkkinen, T., Kuittinen, M., Ruuska, A., & Jung, N. (2015). Reducing embodied carbon during the design process of buildings. Journal of Building Engineering, 4, 113. 10.1016/j.jobe.2015.06.005
  19. Hoisko. (2018). Vakiodetaljit. https://hoisko.fi/wp-content/uploads/2021/12/HOISKO_CLT_Vakiorakennedetaljit12_2021.pdf
  20. Hytönen, Y., & Seppänen, M. (2009). Tehdään elementeistä: Suomalaisen betonielementtirakentamisen historia. SBK-säätiö.
  21. IEA. (2024). World energy outlook. International Energy Agency (IEA). https://www.iea.org/reports/world-energy-outlook-2024
  22. IPCC. (2022). Global warming of 1.5°C. IPCC special report on impacts of global warming of 1.5°C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press for Intergovernmental Panel on Climate Change (IPCC). 10.1017/9781009157940
  23. ISO. (2020). Sustainability in buildings and civil engineering works—Design for disassembly and adaptability—Principles, requirements and guidance (Standard No. 20887:2020). International Organization for Standardization (ISO). https://www.iso.org/standard/69370.html
  24. Kim, S., & Kim, S.-A. (2023). A design support tool based on building information modeling for design for deconstruction: A graph-based deconstructability assessment approach. Journal of Cleaner Production, 383, 135343. 10.1016/j.jclepro.2022.135343
  25. Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155163. 10.1016/j.jcm.2016.02.012
  26. Luthin, A., Traverso, M., & Crawford, R. H. (2023). Assessing the social life cycle impacts of circular economy. Journal of Cleaner Production, 386, 135725. 10.1016/j.jclepro.2022.135725
  27. Material Economics. (2018). The circular economy—A powerful force for climate mitigation. https://materialeconomics.com/sites/default/files/2024-06/material-economics-the-circular-economy.pdf
  28. Meng, X.-L., Rosenthal, R., & Rubin, D. B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111(1), 172175. 10.1037/0033-2909.111.1.172
  29. One Click LCA. (2021). Finnish Building low-carbon assessment method. https://oneclicklca.com/
  30. One Click LCA. (2024). Building circularity tool: Circular assessment method. https://oneclicklca.com/
  31. Puuinfo. (2013). RunkoPES. https://puuinfo.fi/suunnittelu/ohjeet/runkopes-2-0/
  32. Puuinfo. (2014). HalliPES. https://puuinfo.fi/suunnittelu/ohjeet/halli-pes/
  33. Rahla, K. M., Bragança, L., & Mateus, R. (2019). Obstacles and barriers for measuring [a] building’s circularity. IOP Conference Series: Earth and Environmental Science, 225, 012058. 10.1088/1755-1315/225/1/012058
  34. Röck, M., Saade, M. R. M., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Applied Energy, 258, 114107. 10.1016/j.apenergy.2019.114107
  35. Schiavina, M., Melchiorri, M., Corbane, C., Freire, S., & Batista e Silva, F. (2022). Built-up areas are expanding faster than population growth: Regional patterns and trajectories in Europe. Journal of Land Use Science, 17(1), 591608. 10.1080/1747423x.2022.2055184
  36. Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245251. 10.1037/0033-2909.87.2.245
  37. Teräsrakenneyhdistys. (2023). Teräsrakenteiden suunnittelumateriaali. https://www.terasrakenneyhdistys.fi/fin/terasrakenteiden-suunnittelumateriaali/
  38. van der Zwaag, M., Wang, T., Bakker, H., van Nederveen, S., Schuurman, A. C. B., & Bosma, D. (2023). Evaluating building circularity in the early design phase. Automation in Construction, 152, 104941. 10.1016/j.autcon.2023.104941
  39. van Vliet, M. (2018). Disassembling the steps towards building circularity: Redeveloping the building disassembly assessment method in the building circularity indicator (Master’s thesis, Eindhoven University of Technology). https://research.tue.nl/files/122509202/Vliet_0946226_thesis.pdf
  40. van Vliet, M., van Grinsven, J., & Teunizen, J. (2021). Circular buildings—A measurement method for disassembly potential 2.0. Dutch Green Building Council (DGBC). https://www.dgbc.nl/upload/files/Publicaties/circulariteit/DGBC%20Disassembly%20Potential%20Measurement%20Methodology%20_%202022.pdf
  41. Verberne, J. (2016). Building circularity indicators an approach for measuring circularity of a building (Master’s thesis, Eindhoven University of Technology). https://research.tue.nl/files/46934924/846733-1.pdf
  42. Zhong, X., Hu, M., Deetman, S., Steubing, B., Lin, H. X., Hernandez, G. A., Harpprecht, C., Zhang, C., Tukker, A., & Behrens, P. (2021). Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nature Communications, 12(1), 6126. 10.1038/s41467-021-26212-z
  43. Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological Methods, 12(4), 399413. 10.1037/1082-989X.12.4.399
DOI: https://doi.org/10.5334/bc.556 | Journal eISSN: 2632-6655
Language: English
Submitted on: Feb 7, 2025
|
Accepted on: Jun 22, 2025
|
Published on: Aug 28, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Havu Järvelä, Antti Lehto, Taika Pirilä, Matti Kuittinen, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.