Have a personal or library account? Click to login
The feeling of comfort in residential settings II: a quantitative model Cover

The feeling of comfort in residential settings II: a quantitative model

Open Access
|Jul 2023

References

  1. Angevine, O. L. (1972). Individual differences in the annoyance of noise. Journal of the Acoustical Society of America, 52(179), 179179. DOI: 10.1121/1.1982126
  2. ASHRAE. (1999). ANSI/ASHRAE Standard 62: Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2
  3. Auliciems, A. (1981a). Towards a psycho-physiological model of thermal perception. International Journal of Biometeorology, 25(2), 109122. DOI: 10.1007/BF02184458
  4. Auliciems, A. (1981b). Towards a psycho-physiological model of thermal perception. International Journal of Biometeorology, 25(2), 109122. DOI: 10.1007/BF02184458
  5. Bago, B., & De Neys, W. (2018). The Smart System 1: Evidence for the intuitive nature of correct responding on the bat-and-ball problem. Thinking & Reasoning, 25(3), 257299. DOI: 10.1080/13546783.2018.1507949
  6. Bordass, W. T., Bromley, A. K. R., & Leamant, A. J. (1995). Comfort, control and energy efficiency in offices (Information Paper No. IP 3/95). BRE. https://www.infona.pl//resource/bwmeta1.element.elsevier-d7562252-8b0e-3cec-a80d-708ab0d7c50b
  7. Buratti, C., Belloni, E., Merli, F., & Ricciardi, P. (2018). A new index combining thermal, acoustic, and visual comfort of moderate environments in temperate climates. Building and Environment, 139(April), 2737. DOI: 10.1016/j.buildenv.2018.04.038
  8. Bustamante, W., Uribe, D., Vera, S., & Molina, G. (2017). An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings. Applied Energy, 198, 3648. DOI: 10.1016/j.apenergy.2017.04.046
  9. Cheung, T., Schiavon, S., Parkinson, T., Li, P., & Brager, G. (2019). Analysis of the accuracy on PMV–PPD model using the ASHRAE Global Thermal Comfort Database II. Building and Environment, 153(December 2018), 205217. DOI: 10.1016/j.buildenv.2019.01.055
  10. Chinazzo, G., Wienold, J., & Andersen, M. (2018). Combined effects of daylight transmitted through coloured glazing and indoor temperature on thermal responses and overall comfort. Building and Environment, 144(August), 583597. DOI: 10.1016/j.buildenv.2018.08.045
  11. Chinazzo, G., Wienold, J., & Andersen, M. (2019). Daylight affects human thermal perception. Scientific Reports, 9(1), 115. DOI: 10.1038/s41598-019-48963-y
  12. Crandall, B. W., & Hoffman, R. R. (2013). Cognitive task analysis. In J. D. Lee & A. Kirlik (Eds.), The Oxford handbook of cognitive engineering (Web). DOI: 10.1093/oxfordhb/9780199757183.013.0014
  13. de Dear, R., & Brager, G. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy and Buildings, 34, 549561. DOI: 10.1016/S0378-7788(02)00005-1
  14. de Dear, R., Foldvary, V., Zhang, H., Arens, E., Luo, M., Parkinson, T., Du, X., Zhang, W., Chun, C., & Liu, S. (2016). Comfort is in the mind of the beholder: A review of progress in adaptive thermal comfort research over the past two decades. The Fifth International Conference on Human–Environment System. https://escholarship.org/uc/item/62n2985w
  15. Egan, M. D. (1988). Architectural acoustics. McGraw-Hill.
  16. Feher, J. (2012). Cutaneous sensory systems. In Quantitative Human Physiology: An Introduction, 2nd ed. (pp. 389399). Academic Press. DOI: 10.1016/B978-0-12-800883-6.00035-5
  17. Franzitta, V., Milone, A., Milone, D., Pitruzzella, S., Trapanese, M., & Viola, A. (2014). A case study to evaluate the indoor global quality. Advanced Materials Research, 864–867, 10541058. DOI: 10.4028/www.scientific.net/AMR.864-867.1054
  18. Golasi, I., Salata, F., Vollaro, E. de L., & Peña-García, A. (2019). Influence of lighting colour temperature on indoor thermal perception: A strategy to save energy from the HVAC installations. Energy and Buildings, 185, 112122. DOI: 10.1016/j.enbuild.2018.12.026
  19. Guglielmetti, R., Macumber, D., & Long, N. (2011). OpenStudio: An open source integrated analysis platform. 12th International Conference of International Building Performance Simulation Association, December, 1–9. https://www.nrel.gov/docs/fy12osti/51836.pdf
  20. Haigh, D. (1981). User response in environmental control. In D. Hawkes & J. Owers, (Eds.), The architecture of energy (pp. 4563). Construction Press.
  21. Hellwig, R. T., Schweiker, M., & Boerstra, A. (2020). The ambivalence of personal control over indoor climate—How much personal control is adequate? E3S Web of Conferences, 172. DOI: 10.1051/e3sconf/202017206010
  22. Humphreys, M. A., & Hancock, M. (2007). Do people like to feel ‘neutral’? Exploring the variation of the desired thermal sensation on the ASHRAE scale. Energy and Buildings, 39(7), 867874. DOI: 10.1016/j.enbuild.2007.02.014
  23. INSUL. (2021). INSUL. http://www.insul.co.nz/
  24. Jakubiec, J. A., & Reinhart, C. (2011). DIVA 2.0: Integrating daylight and thermal simulations using rhinoceros 3D, DAYSIM and EnergyPlus. Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association (pp. 22022209). DOI: 10.1017/CBO9781107415324.004
  25. Janak, M. (1997). Coupling building energy and lighting simulation. 5th International IPBSA Conference. http://www.ibpsa.org/%5Cproceedings%5CBS1997%5CBS97_P036.pdf
  26. Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. American Economic Review, 93(5), 14491475. https://www.jstor.org/stable/3132137. DOI: 10.1257/000282803322655392
  27. Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to disagree. American Psychologist, 64(6), 515526. DOI: 10.1037/a0016755
  28. Leaman, A., & Bordass, B. (2000). Keep occupants ‘satisficed’. Energy & Environmental Management, 2127. https://www.usablebuildings.co.uk/UsableBuildings/Unprotected/Satisficed.pdf
  29. Lolli, N., Nocente, A., & Grynning, S. (2020). Perceived control in an office test cell, a case study. Buildings, 10(5). DOI: 10.3390/buildings10050082
  30. Luo, M., Cao, B., Zhou, X., Li, M., Zhang, J., Ouyang, Q., & Zhu, Y. (2014). Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings, 72, 411418. DOI: 10.1016/j.enbuild.2013.12.057
  31. March, J. G. (1978). Bounded rationality, ambiguity, and the engineering of choice. Bell Journal of Economics, 9(2), 587608. DOI: 10.1016/j.aap.2013.10.028
  32. Molina, G. (2014). Integrated thermal and lighting analysis of spaces with controled complex fenestration systems and artificial lighting during the design stage. Pontificia Universidad Católica de Chile.
  33. Molina, G., Donn, M., Johnstone, M.-L., & MacGregor, C. (2023). The feeling of comfort in residential settings I: a qualitative model. Buildings & Cities, 4(1), 422440. DOI: 10.5334/bc.322
  34. Molina, G., Vera, S., & Bustamante, W. (2014). A tool for integrated thermal and lighting analysis of spaces with controlled complex fenestration systems and artificial lighting. ESim 2014. https://publications.ibpsa.org/conference/paper/?id=esim2014_4B_5
  35. O’Brien, W., Gunay, H. B., Tahmasebi, F., & Mahdavi, A. (2017). A preliminary study of representing the inter-occupant diversity in occupant modelling. Journal of Building Performance Simulation, 10(5–6), 509526. DOI: 10.1080/19401493.2016.1261943
  36. Petersen, S., & Svendsen, S. (2010). Method and simulation program informed decisions in the early stages of building design. Energy and Buildings, 42(7), 11131119. DOI: 10.1016/j.enbuild.2010.02.002
  37. Ricciardi, P., & Buratti, C. (2018). Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment, 127(September 2017), 2336. DOI: 10.1016/j.buildenv.2017.10.030
  38. Rohles, F. H. (2007). Temperature & temperament—A psychologist looks at comfort. ASHRAE Journal, February, 1422. https://www.healthyheating.com/Thermal_Comfort_Working_Copy/downloads/Rohles_view_only.pdf
  39. Sawicki, D., & Wolska, A. (2015). Discomfort glare prediction by different methods. Lighting Research and Technology, 47(6), 658671. DOI: 10.1177/1477153515589773
  40. Schiffman, H. R. (2000). Sensation and perception: An Integrated Approach, 5th ed. Wiley.
  41. Schweiker, M., Ampatzi, E., Andargie, M. S., Andersen, R. K., Azar, E., Barthelmes, V. M., Berger, C., Bourikas, L., Carlucci, S., Chinazzo, G., Edappilly, L. P., Favero, M., Gauthier, S., Jamrozik, A., Kane, M., Mahdavi, A., Piselli, C., Pisello, A. L., Roetzel, A., … Zhang, S. (2020a). Review of multi-domain approaches to indoor environmental perception and behaviour. Building and Environment, 106804. DOI: 10.1016/j.buildenv.2020.106804
  42. Schweiker, M., Rissetto, R., & Wagner, A. (2020b). Thermal expectation: Influencing factors and its effect on thermal perception. Energy and Buildings, 210. DOI: 10.1016/j.enbuild.2019.109729
  43. Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69(1), 99118. DOI: 10.2307/1884852
  44. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate. Behavioral and Brain Sciences, 23, 645726. DOI: 10.1017/S0140525X00003435
  45. Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving decisions about health, wealth, and happiness. Penguin.
  46. Train, K. E. (2012). Discrete choice methods with simulation. In Econometric reviews, 2nd ed. Cambridge University Press. DOI: 10.1017/CBO9780511805271
  47. US Department of Energy. (2021). EnergyPlus. https://energyplus.net
  48. Vardaxis, N.-G., & Bard, D. (2018). Review of acoustic comfort evaluation in dwellings: Part III—Airborne sound data associated with subjective responses in laboratory tests. Building Acoustics, 25(4), 289305. DOI: 10.1177/1351010X18788685
  49. Veitch, J. A., & Newsham, G. R. (2000). Exercised control, lighting choices, and energy use: An office simulation experiment. Journal of Environmental Psychology, 20(3), 219237. DOI: 10.1006/jevp.1999.0169
  50. Vera, S., Bustamante, W., Molina, G., & Uribe, D. (2016). A flexible and time-efficient schedule-based communication tool for integrated lighting and thermal simulations of spaces with controlled artificial lighting and complex fenestration systems. Journal of Building Performance Simulation, 9(4), 382396. DOI: 10.1080/19401493.2015.1062556
  51. Wienold, J., Frontini, F., Herkel, S., & Mende, S. (2011). Climate based simulation of different shading device systems for comfort and energy demand. 12th Conference of International Building Performance Simulation Association (pp. 1416).
  52. Wienold, J., Iwata, T., Sarey Khanie, M., Erell, E., Kaftan, E., Rodriguez, R. G., … Andersen, M. (2019). Cross-validation and robustness of daylight glare metrics. Lighting Research & Technology, 51(7), 9831013. DOI: 10.1177/1477153519826003
  53. Zhang, H., Arens, E., Huizenga, C., & Han, T. (2010). Thermal sensation and comfort models for non-uniform and transient environments, Part II: Local comfort of individual body parts. Building and Environment, 45(2), 389398. DOI: 10.1016/j.buildenv.2009.06.018
  54. Zhou, X., Ouyang, Q., Zhu, Y., Feng, C., & Zhang, X. (2014). Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort. Indoor Air, 24(2), 171177. DOI: 10.1111/ina.12067
DOI: https://doi.org/10.5334/bc.323 | Journal eISSN: 2632-6655
Language: English
Submitted on: Feb 27, 2023
|
Accepted on: Jun 24, 2023
|
Published on: Jul 13, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 German Molina, Michael Donn, Micael-Lee Johnstone, Casimir MacGregor, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.