References
- Ackermann, M. E. (2002). Cool comfort: America’s romance with air-conditioning. Smithsonian Institution Press.
- ADENE. (2015). Implementing the Energy Performance of Buildings Directive (EPBD). Featuring country reports. ADENE.
https://epbd-ca.eu/archives/2905 - Aghion, P., Hepburn, C., Teytelboym, A., & Zenghelis, D. (2019).
Path dependence, innovation and the economics of climate change . In R. Fouquet (Ed.), Handbook on green growth (pp. 67–83). Edward Elgar. DOI: 10.4337/9781788110686.00011 - Agrawal, V. V., & Bellos, I. (2017). The potential of servicizing as a green business model. Management Science, 63(5), 1545–1562. DOI: 10.1287/mnsc.2015.2399
- AHRI. (2020). AHRI 210/240-2023: Performance rating of unitary air-conditioning & air-source heat pump equipment.
https://www.ahrinet.org/search-standards/ahri-210240-2023-2020-performance-rating-unitary-air-conditioning-air-source-heat - Air-Tro. (n.d.). A look back: Vintage air conditioning ads.
https://www.airtro.com/air-conditioning/look-back-vintage-air-conditioning-ads - Alberini, A., Gans, W., & Alhassan, M. (2011). Individual and public-program adaptation: Coping with heat waves in five cities in Canada. International Journal of Environmental Research and Public Health, 8(12), 4679–4701. DOI: 10.3390/ijerph8124679
- Allehaux, D., & Tessier, P. (2002). Evaluation of the functional obsolescence of building services in European office buildings. Energy and Buildings, 34(2), 127–133. DOI: 10.1016/S0378-7788(01)00104-9
- Amirkhani, S., Bahadori-Jahromi, A., Mylona, A., Godfrey, P., & Cook, D. (2020). Impact of adding comfort cooling systems on the energy consumption and EPC rating of an existing UK hotel. Sustainability, 12(7). DOI: 10.3390/su12072950
- Annarelli, A., Battistella, C., Borgianni, Y., & Nonino, F. (2018). Estimating the value of servitization: A non-monetary method based on forecasted competitive advantage. Journal of Cleaner Production, 200, 74–85. DOI: 10.1016/j.jclepro.2018.07.220
- ANSI. (2020). ASHRAE: Standard 55—Thermal environmental conditions for human occupancy.
https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_55_2020 - ANSI/ASHRAE/IES. (2019). Standard 90.1-019—Energy standard for buildings except low-rise residential buildings.
https://www.ashrae.org/technical-resources/bookstore/standard-90-1#:~:text=Standard%2090.1%20has%20been%20a,except%20low%2Drise%20residential%20buildings - Aryal, A., Chaiwiwatworakul, P., Chirarattananon, S., & Wongsuwan, W. (2022). Subjective assessment of thermal comfort by radiant cooling in a tropical hot humid climate. Energy and Buildings, 254, 111601. DOI: 10.1016/j.enbuild.2021.111601
- ASHRAE. (2017). ASHRAE handbook—Fundamentals (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
https://www.ashrae.org/technical-resources/ashrae-handbook/ashrae-handbook-online - Banham, R. (1969). Architecture of the well-tempered environment. Architectural Press. DOI: 10.1016/B978-0-85139-074-1.50011-X
- Barber, D. (2017). Modern architecture and climate design before air conditioning. Princeton University Press.
- Basile, S. (2014). Cool: How air conditioning changed everything. Fordham University Press. DOI: 10.1515/9780823261789
- BCA. (2015). Green Mark for non-residential buildings NRB.
https://www1.bca.gov.sg/docs/default-source/docs-corp-buildsg/sustainability/green_mark_nrb_2015_criteria.pdf - Becerra, J. A., Lizana, J., Gil, M., Barrios-Padura, A., Blondeau, P., & Chacartegui, R. (2020). Identification of potential indoor air pollutants in schools. Journal of Cleaner Production, 242. DOI: 10.1016/j.jclepro.2019.118420
- Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2019). Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 198, 467–490. DOI: 10.1016/j.enbuild.2019.06.023
- Blomsma, F., Tennant, M., & Brennan, G. (2022).
Exploring resource-service systems—Beyond product-service systems and toward configurations of circular strategies, business models, and actors . In Circular economy and sustainability, Vol. 1 (pp. 127–144). Elsevier. DOI: 10.1016/B978-0-12-819817-9.00017-X - Brager, G., & De Dear, R. (2003).
Historical and cultural influences on comfort expectations . In R. J. Cole & R. Lorch (Eds.), Buildings, culture and environment: Informing local and global practices (pp. 183–185). Blackwell. - Brager, G. S., & De Dear, R. J. (1998). Thermal adaptation in the built environment: A literature review. Energy and Buildings, 27(1), 83–96. DOI: 10.1016/S0378-7788(97)00053-4
- Cabeza, L. F., & Chàfer, M. (2020). Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review. Energy and Buildings, 219, 110009. DOI: 10.1016/j.enbuild.2020.110009
- Carlucci, S., Bai, L., De Dear, R., & Yang, L. (2018). Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment, 137, 73–89. DOI: 10.1016/j.buildenv.2018.03.053
- CBE. (n.d.). CBE thermal comfort tool.
https://comfort.cbe.berkeley.edu/ - CCC. (2020). The sixth carbon budget. F-gases.
https://www.theccc.org.uk/publication/sixth-carbon-budget/ - Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345–354. DOI: 10.1509/jmkr.43.3.345
- Chi, F., Xu, L., & Peng, C. (2020). Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving. Applied Energy, 266, 114865. DOI: 10.1016/j.apenergy.2020.114865
- Clasp. (2020). A study on feasibility of ecolabeling program in India.
https://www.clasp.ngo/wp-content/uploads/2021/01/Ecolabel-final-report.pdf - Cool Coalition. (n.d.). Cooling community announces steps to beat global warming with GBP 12 million boost from UK.
https://coolcoalition.org/cooling-community-announces-steps-to-beat-global-warming-with-gbp-12-million-boost-from-uk/ - Cooper, G. (1998). Air-conditioning America: Engineers and the controlled environment, 1900–1960. Johns Hopkins University Press.
- Costanza, R., & Daly, H. E. (1992). Society for Conservation Biology, Natural Capital and Sustainable Development. Conservation Biology, 6(1), 37–46.
http://www.jstor.org/stable/2385849%5Cnhttp://www.jstor.org/page/info/about/policies/terms.jsp . DOI: 10.1046/j.1523-1739.1992.610037.x - Crawley, D. B., Lawrie, L. K., & Systems, B. (2019). Should we be using just ‘typical’ weather data in building performance simulation? In 16th International Building Performance Simulation Association (IBPSA) Conference, 2–4. DOI: 10.26868/25222708.2019.210594
- CREDS. (2018). Energy Performance Certificates in buildings: Call for evidence.
https://www.creds.ac.uk/wp-content/uploads/BEIS-EPCs-Consultation-Call-Oct-2018.pdf - Creutzig, F., Roy, J., Lamb, W. F., Azevedo, I. M. L., Bruine De Bruin, W., Dalkmann, H., Edelenbosch, O. Y., Geels, F. W., Grubler, A., Hepburn, C., Hertwich, E. G., Khosla, R., Mattauch, L., Minx, J. C., Ramakrishnan, A., Rao, N. D., Steinberger, J. K., Tavoni, M., Ürge-Vorsatz, D., & Weber, E. U. (2018). Towards demand-side solutions for mitigating climate change. Nature Climate Change, 8(4), 268–271. DOI: 10.1038/s41558-018-0121-1
- De Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104, 145–167.
https://escholarship.org/uc/item/4qq2p9c6 - De Vecchi, R., Cândido, C., & Lamberts, R. (2012). Thermal history and its influence on occupants’ thermal acceptability and cooling preferences in warm–humid climates: A new desire for comfort. In Proceedings of the 7th Windsor Conference: The Changing Context of Comfort in an Unpredictable World.
- Dean Wilson, E. (2021). After cooling: On freon, global warming, and the terrible cost of comfort. Simon & Schuster.
- Dehoust, G., & Schuler, D. (2007). Life cycle assessment of the treatment and recycling of refrigeration equipment containing CFCs and hydrocarbons (March).
https://www.oeko.de/oekodoc/1108/2007-226-en.pdf - Drury, P., Watson, S., & Lomas, K. J. (2021). Summertime overheating in UK homes: Is there a safe haven? Buildings & Cities, 2(1), 970. DOI: 10.5334/bc.152
- Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225, 110322. DOI: 10.1016/j.enbuild.2020.110322
- EPA. (2016). Transitioning to low-GWP alternatives.
https://www.epa.gov/sites/default/files/2016-12/documents/international_transitioning_to_low-gwp_alternatives_in_res_and_com_ac_chillers.pdf - EPB Center. (n.d.).
https://epb.center/ - EIA. (2021). Pathway to net-zero. Cooling product list.
https://www.epa.gov/sites/default/files/2016-12/documents/international_transitioning_to_low-gwp_alternatives_in_res_and_com_ac_chillers.pdf - European Commission. (2022a). Energy Union—New reporting requirements on national energy & climate plans.
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12536-Energy-Union-new-reporting-requirements-on-national-energy-climate-plans_en - European Commission. (2022b). Sustainable product policy & ecodesign.
https://single-market-economy.ec.europa.eu/industry/sustainability/sustainable-product-policy-ecodesign_en - European Standards. (2019a). EN 16798-1:2019. Energy performance of buildings. Ventilation for buildings. Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.
- European Standards. (2019b). EN 16798-2:2019: Energy performance of buildings—Ventilation for buildings. Part 2: Interpretation of the requirements in EN 167-8-1—Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor.
- European Union. (2018). Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency.
- Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Danish Technical Press.
- Fernandes, S. da C., Pigosso, D. C. A., McAloone, T. C., & Rozenfeld, H. (2020). Towards product-service system oriented to circular economy: A systematic review of value proposition design approaches. Journal of Cleaner Production, 257. DOI: 10.1016/j.jclepro.2020.120507
- Fosas, D., Coley, D. A., Natarajan, S., Herrera, M., Fosas de Pando, M., & Ramallo-Gonzalez, A. (2018). Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Building and Environment, 143, 740–759. DOI: 10.1016/j.buildenv.2018.07.033
- Fox Family Heating & Air. (n.d.). How long should my AC last?
https://www.foxfamilyhvac.com/how-long-should-my-ac-last/ - Fukawa, Y., Murakami, R., & Ichinose, M. (2021). Field study on occupants’ subjective symptoms attributed to overcooled environments in air-conditioned offices in hot and humid climates of Asia. Building and Environment, 195, 107741. DOI: 10.1016/j.buildenv.2021.107741
- Goncalves, V. L., Costanzo, V., Fabbri, K., & Rakha, T. (2022). Overheating assessment in Passivhaus dwellings: The influence of prediction tools. Buildings & Cities, 3(1), 153–167. DOI: 10.5334/bc.151
- Hendel, M., Azos-Diaz, K., & Tremeac, B. (2017). Behavioral adaptation to heat-related health risks in cities. Energy and Buildings, 152, 823–829. DOI: 10.1016/j.enbuild.2016.11.063
- Hoyt, T., Arens, E., & Zhang, H. (2015). Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 88, 89–96. DOI: 10.1016/j.buildenv.2014.09.010
- Hughes, B. R., Chaudhry, H. N., & Ghani, S. A. (2011). A review of sustainable cooling technologies in buildings. Renewable and Sustainable Energy Reviews, 15(6), 3112–3120. DOI: 10.1016/j.rser.2011.03.032
- Huikkola, T., & Kohtamäki, M. (2018).
Business models in servitization . In Practices and tools for servitization: Managing service transition (pp. 61–81). Palgrave Macmillan. DOI: 10.1007/978-3-319-76517-4_4 - IDAE. (2009). Condiciones de aceptación de Procedimientos alternativos a LIDER y CALENER. Instituto para la Diversificación y Ahorro de la Eneridea (IDAE).
- IEA. (2017). Space cooling: More access, more comfort, less energy (Information Paper). International Energy Agency (IEA). DOI:
https://dx.doi.org/10.1016/j.jamda.2015.03.005 - IEA. (2018). The future of cooling. Opportunities for energy-efficient air conditioning. International Energy Agency (IEA).
https://www.iea.org/reports/the-future-of-cooling - IEA. (2021). Achievements of energy efficiency appliance and equipment standards and labelling programmes. International Energy Agency (IEA).
https://www.iea.org/reports/achievements-of-energy-efficiency-appliance-and-equipment-standards-and-labelling-programmes - IPCC. (2022a). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. DOI: 10.1017/9781009325844.001
- IPCC. (2022b). Climate change 2022. Mitigation of climate change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/ - IRENA. (2020). Innovation outlook: Thermal energy storage.
https://www.irena.org/publications/2020/Nov/Innovation-outlook-Thermal-energy-storage - ISO. (2005). ISO 7730:2005: Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organization for Standardization (ISO).
https://www.iso.org/standard/39155.html - ISO. (2017). ISO 52000-1:2017: Energy performance of buildings. Overarching EPB assessment. Part 1: General framework and procedures. International Organization for Standardization (ISO).
https://www.iso.org/standard/65601.html - Jay, O., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Ebi, K. L. (2021). Reducing the health effects of hot weather and heat extremes: From personal cooling strategies to green cities. The Lancet, 398(10301), 709–724. DOI: 10.1016/S0140-6736(21)01209-5
- Jensen, P. B., Laursen, L. N., & Haase, L. M. (2021). Barriers to product longevity: A review of business, product development and user perspectives. Journal of Cleaner Production, 313, 127951. DOI: 10.1016/j.jclepro.2021.127951
- Kalanki, A., Winslow, C., & Campbell, I. (2021). Global Cooling Prize: Solving the cooling dilemma (April). RMI.
https://rmi.org/wp-content/uploads/dlm_uploads/2021/04/GlobalCoolingPrize_SolvingtheCoolingDilemma.pdf - Karkour, S., Ihara, T., Kuwayama, T., Yamaguchi, K., & Itsubo, N. (2021). Life cycle assessment of residential air conditioners considering the benefits of their use: A case study in Indonesia. Energies, 14(2), 447. DOI: 10.3390/en14020447
- Khare, V. R., Garg, R., Mathur, J., & Garg, V. (2021). Thermal comfort analysis of personalized conditioning system and performance assessment with different radiant cooling systems. Energy and Built Environment, July. DOI: 10.1016/j.enbenv.2021.09.001
- Khosla, R., Agarwal, A., Sircar, N., & Chatterjee, D. (2021a). The what, why, and how of changing cooling energy consumption in India’s urban households. Environmental Research Letters, 16(4), 044035. DOI: 10.1088/1748-9326/abecbc
- Khosla, R., Miranda, N. D., Trotter, P. A., Mazzone, A., Renaldi, R., McElroy, C., Cohen, F., Jani, A., Perera-Salazar, R., & McCulloch, M. (2021b). Cooling for sustainable development. Nature Sustainability, 4, 201–208. DOI: 10.1038/s41893-020-00627-w
- Khosla, R., Renaldi, R., Mazzone, A., McElroy, C., & Palafox-Alcantar, P. G. (2022). Sustainable cooling in a warming world: Technologies, cultures and circularity. Annual Review of Environment and Resources, 47, 449–478. DOI: 10.1146/annurev-environ-120420-085027
- Khoukhi, M., & Fezzioui, N. (2012). Thermal comfort design of traditional houses in hot dry region of Algeria. International Journal of Energy and Environmental Engineering. DOI: 10.1186/2251-6832-3-5
- Kurpiela, S., & Teuteberg, F. (2022). Strategic planning of product-service systems: A systematic literature review. Journal of Cleaner Production, 338, 130528. DOI: 10.1016/j.jclepro.2022.130528
- Lizana, J. (2019). Advanced thermal energy storage and management solutions towards low-carbon buildings [University of Seville].
https://idus.us.es/handle/11441/91357 - Lizana, J., Almeida, S. M., Serrano-Jiménez, A., Becerra, J. A., Gil-Báez, M., Barrios-Padura, A., & Chacartegui, R. (2020). Contribution of indoor microenvironments to the daily inhaled dose of air pollutants in children. The importance of bedrooms. Building and Environment, 183, 107188. DOI: 10.1016/j.buildenv.2020.107188
- Lizana, J., Chacartegui, R., Barrios-Padura, A., & Ortiz, C. (2018a). Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 82, 3705–3749. DOI: 10.1016/j.rser.2017.10.093
- Lizana, J., Chacartegui, R., Barrios-Padura, A., & Valverde, J. M. (2017). Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Applied Energy, 203, 219–239. DOI: 10.1016/j.apenergy.2017.06.008
- Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J. M., & Ortiz, C. (2018b). Identification of best available thermal energy storage compounds for low-to-moderate temperature storage applications in buildings. Materiales de Construcción, 68(331), 1–35. DOI: 10.3989/mc.2018.10517
- Lizana, J., Halloran, C. E., Wheeler, S., Amghar, N., Renaldi, R., Killendahl, M., Perez-Maqueda, L. A., McCulloch, M., & Chacartegui, R. (2023). A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification. Energy, 262, 125298. DOI: 10.1016/j.energy.2022.125298
- Lizana, J., López-Cabeza, V. P., Renaldi, R., Diz-Mellado, E., Rivera-Gómez, C., & Galán-Marín, C. (2022). Integrating courtyard microclimate in building performance to mitigate extreme urban heat impacts. Sustainable Cities and Society, 78, 103590. DOI: 10.1016/j.scs.2021.103590
- López-García, E., Lizana, J., Serrano-Jiménez, A., Díaz-López, C., & Ángela Barrios-Padura. (2022). Monitoring and analytics to measure heat resilience of buildings and support retrofitting by passive cooling. Journal of Building Engineering, 57, 104985. DOI: 10.1016/j.jobe.2022.104985
- Lovins, A. B. (2018). How big is the energy efficiency resource? Environmental Research Letters, 13(9), 090401. DOI: 10.1088/1748-9326/aad965
- Luo, M., Zhang, H., Wang, Z., Arens, E., Chen, W., Bauman, F. S., & Raftery, P. (2021). Ceiling-fan-integrated air-conditioning: Thermal comfort evaluations. Buildings & Cities, 2(1), 928–951. DOI: 10.5334/bc.137
- Ma, N., Aviv, D., Guo, H., & Braham, W. W. (2021). Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality. Renewable and Sustainable Energy Reviews, 135, 110436. DOI: 10.1016/j.rser.2020.110436
- Malik, A., Bongers, C., McBain, B., Rey-Lescure, O., De Dear, R., Capon, A., Lenzen, M., & Jay, O. (2022). The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: An analysis of energy demand and associated greenhouse gas emissions. The Lancet Planetary Health, 6(4), e301–e309. DOI: 10.1016/S2542-5196(22)00042-0
- Mehmood, S., Lizana, J., Núñez-Peiró, M., Maximov, S. A., & Friedrich, D. (2022). Resilient cooling pathway for extremely hot climates in southern Asia. Applied Energy, 325, 119811. DOI: 10.1016/j.apenergy.2022.119811
- Ministerio de Fomento del Gobierno de España. (2020). Condiciones técnicas de los procedimientos para la evaluación de la eficiencia energética de los edificios.
https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/Borrador_Condiciones_tecnicas_de_los_procedimientos_para_la_evaluacion_de_la_eficiencia_energetica.pdf - Miranda, N. D., Renaldi, R., Khosla, R., & McCulloch, M. D. (2021). Bibliometric analysis and landscape of actors in passive cooling technologies. Renewable and Sustainable Energy Reviews, May, 111406. DOI: 10.1016/j.rser.2021.111406
- Monroe, A., Asamoah, O., Lam, Y., Koenker, H., Psychas, P., Lynch, M., Ricotta, E., Hornston, S., Berman, A., & Harvey, S. A. (2015). Outdoor-sleeping and other night-time activities in northern Ghana: Implications for residual transmission and malaria prevention. Malaria Journal, 14(1). DOI: 10.1186/s12936-015-0543-4
- Mori, A. (2021). How do incumbent companies’ heterogeneous responses affect sustainability transitions? Insights from China’s major incumbent power generators. Environmental Innovation and Societal Transitions, 39, 55–72. DOI: 10.1016/j.eist.2021.02.003
- Murtagh, N., Badi, S., Shi, Y., Wei, S., & Yu, W. (2022). Living with air-conditioning: Experiences in Dubai, Chongqing and London. Buildings & Cities, 3(1), 10–27. DOI: 10.5334/bc.147
- Needham, J. (2019). Lullabies for air conditioners: The corporate bliss of Japanese ambient. The Guardian.
https://www.theguardian.com/music/2019/feb/19/lullabies-for-air-conditioners-the-corporate-bliss-of-japanese-ambient - Newell, P., & Johnstone, P. (2018).
The political economy of incumbency . In J. Skvogaard & A. Van Asselt (Eds.), The politics of fossil fuel subsidies and their reform (pp. 66–80). Cambridge University Press. DOI: 10.1017/9781108241946.006 - Nishijima, D., Nansai, K., Kagawa, S., & Oguchi, M. (2020). Conflicting consequences of price-induced product lifetime extension in circular economy: The impact on metals, greenhouse gas, and sales of air conditioners. Resources, Conservation and Recycling, 162, 105023. DOI: 10.1016/j.resconrec.2020.105023
- Osunmuyiwa, O. O., Payne, S. R., Vigneswara Ilavarasan, P., Peacock, A. D., & Jenkins, D. P. (2020). I cannot live without air conditioning! The role of identity, values and situational factors on cooling consumption patterns in India. Energy Research and Social Science, 69, 101634. DOI: 10.1016/j.erss.2020.101634
- Palafox-Alcantar, P. G., Khosla, R., McElroy, C., & Miranda, N. (2022). Circular economy for cooling: A review to develop a systemic framework for production networks. Journal of Cleaner Production, 379(P1), 134738. DOI: 10.1016/j.jclepro.2022.134738
- Parkinson, T., Schiavon, S., De Dear, R., & Brager, G. (2021). Overcooling of offices reveals gender inequity in thermal comfort. Scientific Reports, 11(1), 1–7. DOI: 10.1038/s41598-021-03121-1
- Pasut, W., Zhang, H., Arens, E., & Zhai, Y. (2015). Energy-efficient comfort with a heated/cooled chair: Results from human subject tests. Building and Environment, 84, 10–21. DOI: 10.1016/j.buildenv.2014.10.026
- Pérez-Lombard, L., Ortiz, J., Maestre, I. R., & Coronel, J. F. (2012). Constructing HVAC energy efficiency indicators. Energy and Buildings, 47, 619–629. DOI: 10.1016/j.enbuild.2011.12.039
- Renaldi, R., Miranda, N. D., Khosla, R., & McCulloch, M. D. (2021). Patent landscape of not-in-kind active cooling technologies between 1998 and 2017. Journal of Cleaner Production, 296, 126507. DOI: 10.1016/j.jclepro.2021.126507
- Robbins, S. (2003). Keeping things cool: Air-conditioning in the modern world. OAH Magazine of History, 18(1), 42–46. DOI: 10.1093/maghis/18.1.42
- Samuelson, H. W., Baniassadi, A., & Gonzalez, P. I. (2020a). Beyond energy savings: Investigating the co-benefits of heat resilient architecture. Energy, 204, 117886. DOI: 10.1016/j.energy.2020.117886
- Samuelson, H. W., Baniassadi, A., & Gonzalez, P. I. (2020b). Beyond energy savings: Investigating the co-benefits of heat resilient architecture. Energy. DOI: 10.1016/j.energy.2020.117886
- Sanchez-Guevara, C., Peiró Núñez, M., Taylor, J., Mavrogianni, A., & Neila González, J. (2019). Assessing population vulnerability towards summer energy poverty: Case studies of Madrid and London. Energy & Buildings, 190, 132–143. DOI: 10.1016/j.enbuild.2019.02.024
- Schiavon, S., & Melikov, A. K. (2008). Energy saving and improved comfort by increased air movement. Energy and Buildings, 40(10), 1954–1960. DOI: 10.1016/j.enbuild.2008.05.001
- Schiavon, S., Melikov, A. K., & Sekhar, C. (2010). Energy analysis of the personalized ventilation system in hot and humid climates. Energy and Buildings, 42(5), 699–707. DOI: 10.1016/j.enbuild.2009.11.009
- Schleich, J., Durand, A., & Brugger, H. (2021). How effective are EU minimum energy performance standards and energy labels for cold appliances? Energy Policy, 149, 112069. DOI: 10.1016/j.enpol.2020.112069
- Seppänen, O. A., & Fisk, W. (2006). Some quantitative relations between indoor environmental quality and work performance or health. HVAC and R Research, 12(4), 957–973. DOI: 10.1080/10789669.2006.10391446
- Serrano-Jiménez, A., Lizana, J., Molina-Huelva, M., & Barrios-Padura, Á. (2020). Indoor environmental quality in social housing with elderly occupants in Spain: Measurement results and retrofit opportunities. Journal of Building Engineering, 30, 101264. DOI: 10.1016/j.jobe.2020.101264
- Sherry, D., Nolan, M., Seidel, S., & Andersen, S. O. (n.d.). HFO-1234yf: An examination of projected long-term costs of production.
https://www.1234facts.com - Short, A. (2017). The recovery of natural environments in architecture. Routledge. DOI: 10.4324/9781315765853
- Shove, E., Walker, G., & Brown, S. (2014a). Material culture, room temperature and the social organisation of thermal energy. Journal of Material Culture, 19(2), 113–124. DOI: 10.1177/1359183514525084
- Shove, E., Walker, G., & Brown, S. (2014b). Transnational transitions: The diffusion and integration of mechanical cooling. Urban Studies, 51(7), 1506–1519. DOI: 10.1177/0042098013500084
- Siu, C. Y., & Liao, Z. (2020). Is building energy simulation based on TMY representative: A comparative simulation study on doe reference buildings in Toronto with typical year and historical year type weather files. Energy and Buildings, 211. DOI: 10.1016/j.enbuild.2020.109760
- Song, Y.-l., Darani, K. S., Khdair, A. I., Abu-Rumman, G., & Kalbasi, R. (2021). A review on conventional passive cooling methods applicable to arid and warm climates considering economic cost and efficiency analysis in resource-based cities. Energy Reports, 7, 2784–2820. DOI: 10.1016/j.egyr.2021.04.056
- Sorrell, S., Gatersleben, B., & Druckman, A. (2020). The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Research and Social Science, 64, 101439. DOI: 10.1016/j.erss.2020.101439
- Stirling, A. (2019). How deep is incumbency? A ‘configuring fields’ approach to redistributing and reorienting power in socio-material change. Energy Research and Social Science, 58, 101239. DOI: 10.1016/j.erss.2019.101239
- Takakusagi, A. (2021). Theoretical study evaluating renewal of an air-conditioning system. Journal of Building Engineering, 44, 102876. DOI: 10.1016/j.jobe.2021.102876
- Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563. DOI: 10.1016/j.softx.2020.100563
- Teufl, H., Schuss, M., & Mahdavi, A. (2021). Potential and challenges of a user-centric radiant cooling approach. Energy and Buildings, 246, 111104. DOI: 10.1016/j.enbuild.2021.111104
- UK Government. (2021). Improving Energy Performance Certificates: Action plan progress report.
https://www.gov.uk/government/publications/improving-energy-performance-certificates-action-plan-progress-report/improving-energy-performance-certificates-action-plan-progress-report - UK Government. (n.d.). Fluorinated gas (F gas): Guidance for users, producers and traders.
https://www.gov.uk/government/collections/fluorinated-gas-f-gas-guidance-for-users-producers-and-traders - UN/IEA. (2020). Cooling emissions and policy synthesis report.
https://www.unep.org/resources/report/cooling-emissions-and-policy-synthesis-report#:~:text=Action%20under%20the%20Kigali%20Amendment,of%20global%20warming%20by%202100 - Velders, G. J. M., Fahey, D. W., Daniel, J. S., McFarland, M., & Andersen, S. O. (2009). The large contribution of projected HFC emissions to future climate forcing. Proceedings of the National Academy of Sciences, USA, 106(27), 10949–10954. DOI: 10.1073/pnas.0902817106
- von Delft, S., & Zhao, Y. (2021). Business models in process industries: Emerging trends and future research. Technovation, 105, 102195. DOI: 10.1016/j.technovation.2020.102195
- Warwicker, B. (2010).
Desiccant materials for moisture control in buildings . In Materials for energy efficiency and thermal comfort in buildings. Woodhead. DOI: 10.1533/9781845699277.2.365 - WEF. (2021). What do chief heat officers mean for climate change—And why does this new role matter? World Economic Forum (WEF).
https://www.weforum.org/agenda/2021/11/what-is-a-chief-heat-officer-job-role/ - Whyte, W. H. (1954). The web of word of mouth. Fortune, 50(5), 140–143.
- Wilhite, H. (2009). The conditioning of comfort. Building Research & Information, 37(1), 84–88. DOI: 10.1080/09613210802559943
- Wolske, K. S., Gillingham, K. T., & Schultz, P. W. (2020). Peer influence on household energy behaviours. Nature Energy, 5(3), 202–212. DOI: 10.1038/s41560-019-0541-9
- Wu, D., Hu, B., & Wang, R. Z. (2021). Vapor compression heat pumps with pure low-GWP refrigerants. Renewable and Sustainable Energy Reviews, 138. DOI: 10.1016/j.rser.2020.110571
- Zhang, C., Kazanci, O. B., Levinson, R., Heiselberg, P., Olesen, B. W., Chiesa, G., Sodagar, B., Ai, Z., Selkowitz, S., Zinzi, M., Mahdavi, A., Teufl, H., Kolokotroni, M., Salvati, A., Bozonnet, E., Chtioui, F., Salagnac, P., Rahif, R., Attia, S., … Zhang, G. (2021). Resilient cooling strategies—A critical review and qualitative assessment. Energy and Buildings, 251, 111312. DOI: 10.1016/j.enbuild.2021.111312
- Zhao, L., Zeng, W., & Yuan, Z. (2015). Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: A life cycle carbon footprint analysis. Journal of Cleaner Production, 100, 262–268. DOI: 10.1016/j.jclepro.2015.03.063
