Have a personal or library account? Click to login
Overcoming the incumbency and barriers to sustainable cooling Cover

References

  1. Ackermann, M. E. (2002). Cool comfort: America’s romance with air-conditioning. Smithsonian Institution Press.
  2. ADENE. (2015). Implementing the Energy Performance of Buildings Directive (EPBD). Featuring country reports. ADENE. https://epbd-ca.eu/archives/2905
  3. Aghion, P., Hepburn, C., Teytelboym, A., & Zenghelis, D. (2019). Path dependence, innovation and the economics of climate change. In R. Fouquet (Ed.), Handbook on green growth (pp. 6783). Edward Elgar. DOI: 10.4337/9781788110686.00011
  4. Agrawal, V. V., & Bellos, I. (2017). The potential of servicizing as a green business model. Management Science, 63(5), 15451562. DOI: 10.1287/mnsc.2015.2399
  5. AHRI. (2020). AHRI 210/240-2023: Performance rating of unitary air-conditioning & air-source heat pump equipment. https://www.ahrinet.org/search-standards/ahri-210240-2023-2020-performance-rating-unitary-air-conditioning-air-source-heat
  6. Air-Tro. (n.d.). A look back: Vintage air conditioning ads. https://www.airtro.com/air-conditioning/look-back-vintage-air-conditioning-ads
  7. Alberini, A., Gans, W., & Alhassan, M. (2011). Individual and public-program adaptation: Coping with heat waves in five cities in Canada. International Journal of Environmental Research and Public Health, 8(12), 46794701. DOI: 10.3390/ijerph8124679
  8. Allehaux, D., & Tessier, P. (2002). Evaluation of the functional obsolescence of building services in European office buildings. Energy and Buildings, 34(2), 127133. DOI: 10.1016/S0378-7788(01)00104-9
  9. Amirkhani, S., Bahadori-Jahromi, A., Mylona, A., Godfrey, P., & Cook, D. (2020). Impact of adding comfort cooling systems on the energy consumption and EPC rating of an existing UK hotel. Sustainability, 12(7). DOI: 10.3390/su12072950
  10. Annarelli, A., Battistella, C., Borgianni, Y., & Nonino, F. (2018). Estimating the value of servitization: A non-monetary method based on forecasted competitive advantage. Journal of Cleaner Production, 200, 7485. DOI: 10.1016/j.jclepro.2018.07.220
  11. ANSI. (2020). ASHRAE: Standard 55—Thermal environmental conditions for human occupancy. https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_55_2020
  12. ANSI/ASHRAE/IES. (2019). Standard 90.1-019—Energy standard for buildings except low-rise residential buildings. https://www.ashrae.org/technical-resources/bookstore/standard-90-1#:~:text=Standard%2090.1%20has%20been%20a,except%20low%2Drise%20residential%20buildings
  13. Aryal, A., Chaiwiwatworakul, P., Chirarattananon, S., & Wongsuwan, W. (2022). Subjective assessment of thermal comfort by radiant cooling in a tropical hot humid climate. Energy and Buildings, 254, 111601. DOI: 10.1016/j.enbuild.2021.111601
  14. ASHRAE. (2017). ASHRAE handbook—Fundamentals (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.ashrae.org/technical-resources/ashrae-handbook/ashrae-handbook-online
  15. Banham, R. (1969). Architecture of the well-tempered environment. Architectural Press. DOI: 10.1016/B978-0-85139-074-1.50011-X
  16. Barber, D. (2017). Modern architecture and climate design before air conditioning. Princeton University Press.
  17. Basile, S. (2014). Cool: How air conditioning changed everything. Fordham University Press. DOI: 10.1515/9780823261789
  18. BCA. (2015). Green Mark for non-residential buildings NRB. https://www1.bca.gov.sg/docs/default-source/docs-corp-buildsg/sustainability/green_mark_nrb_2015_criteria.pdf
  19. Becerra, J. A., Lizana, J., Gil, M., Barrios-Padura, A., Blondeau, P., & Chacartegui, R. (2020). Identification of potential indoor air pollutants in schools. Journal of Cleaner Production, 242. DOI: 10.1016/j.jclepro.2019.118420
  20. Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2019). Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 198, 467490. DOI: 10.1016/j.enbuild.2019.06.023
  21. Blomsma, F., Tennant, M., & Brennan, G. (2022). Exploring resource-service systems—Beyond product-service systems and toward configurations of circular strategies, business models, and actors. In Circular economy and sustainability, Vol. 1 (pp. 127144). Elsevier. DOI: 10.1016/B978-0-12-819817-9.00017-X
  22. Brager, G., & De Dear, R. (2003). Historical and cultural influences on comfort expectations. In R. J. Cole & R. Lorch (Eds.), Buildings, culture and environment: Informing local and global practices (pp. 183185). Blackwell.
  23. Brager, G. S., & De Dear, R. J. (1998). Thermal adaptation in the built environment: A literature review. Energy and Buildings, 27(1), 8396. DOI: 10.1016/S0378-7788(97)00053-4
  24. Cabeza, L. F., & Chàfer, M. (2020). Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review. Energy and Buildings, 219, 110009. DOI: 10.1016/j.enbuild.2020.110009
  25. Carlucci, S., Bai, L., De Dear, R., & Yang, L. (2018). Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment, 137, 7389. DOI: 10.1016/j.buildenv.2018.03.053
  26. CBE. (n.d.). CBE thermal comfort tool. https://comfort.cbe.berkeley.edu/
  27. CCC. (2020). The sixth carbon budget. F-gases. https://www.theccc.org.uk/publication/sixth-carbon-budget/
  28. Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345354. DOI: 10.1509/jmkr.43.3.345
  29. Chi, F., Xu, L., & Peng, C. (2020). Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving. Applied Energy, 266, 114865. DOI: 10.1016/j.apenergy.2020.114865
  30. Clasp. (2020). A study on feasibility of ecolabeling program in India. https://www.clasp.ngo/wp-content/uploads/2021/01/Ecolabel-final-report.pdf
  31. Cool Coalition. (n.d.). Cooling community announces steps to beat global warming with GBP 12 million boost from UK. https://coolcoalition.org/cooling-community-announces-steps-to-beat-global-warming-with-gbp-12-million-boost-from-uk/
  32. Cooper, G. (1998). Air-conditioning America: Engineers and the controlled environment, 1900–1960. Johns Hopkins University Press.
  33. Costanza, R., & Daly, H. E. (1992). Society for Conservation Biology, Natural Capital and Sustainable Development. Conservation Biology, 6(1), 3746. http://www.jstor.org/stable/2385849%5Cnhttp://www.jstor.org/page/info/about/policies/terms.jsp. DOI: 10.1046/j.1523-1739.1992.610037.x
  34. Crawley, D. B., Lawrie, L. K., & Systems, B. (2019). Should we be using just ‘typical’ weather data in building performance simulation? In 16th International Building Performance Simulation Association (IBPSA) Conference, 24. DOI: 10.26868/25222708.2019.210594
  35. CREDS. (2018). Energy Performance Certificates in buildings: Call for evidence. https://www.creds.ac.uk/wp-content/uploads/BEIS-EPCs-Consultation-Call-Oct-2018.pdf
  36. Creutzig, F., Roy, J., Lamb, W. F., Azevedo, I. M. L., Bruine De Bruin, W., Dalkmann, H., Edelenbosch, O. Y., Geels, F. W., Grubler, A., Hepburn, C., Hertwich, E. G., Khosla, R., Mattauch, L., Minx, J. C., Ramakrishnan, A., Rao, N. D., Steinberger, J. K., Tavoni, M., Ürge-Vorsatz, D., & Weber, E. U. (2018). Towards demand-side solutions for mitigating climate change. Nature Climate Change, 8(4), 268271. DOI: 10.1038/s41558-018-0121-1
  37. De Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104, 145167. https://escholarship.org/uc/item/4qq2p9c6
  38. De Vecchi, R., Cândido, C., & Lamberts, R. (2012). Thermal history and its influence on occupants’ thermal acceptability and cooling preferences in warm–humid climates: A new desire for comfort. In Proceedings of the 7th Windsor Conference: The Changing Context of Comfort in an Unpredictable World.
  39. Dean Wilson, E. (2021). After cooling: On freon, global warming, and the terrible cost of comfort. Simon & Schuster.
  40. Dehoust, G., & Schuler, D. (2007). Life cycle assessment of the treatment and recycling of refrigeration equipment containing CFCs and hydrocarbons (March). https://www.oeko.de/oekodoc/1108/2007-226-en.pdf
  41. Drury, P., Watson, S., & Lomas, K. J. (2021). Summertime overheating in UK homes: Is there a safe haven? Buildings & Cities, 2(1), 970. DOI: 10.5334/bc.152
  42. Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225, 110322. DOI: 10.1016/j.enbuild.2020.110322
  43. EPA. (2016). Transitioning to low-GWP alternatives. https://www.epa.gov/sites/default/files/2016-12/documents/international_transitioning_to_low-gwp_alternatives_in_res_and_com_ac_chillers.pdf
  44. EPB Center. (n.d.). https://epb.center/
  45. EIA. (2021). Pathway to net-zero. Cooling product list. https://www.epa.gov/sites/default/files/2016-12/documents/international_transitioning_to_low-gwp_alternatives_in_res_and_com_ac_chillers.pdf
  46. European Commission. (2022a). Energy Union—New reporting requirements on national energy & climate plans. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12536-Energy-Union-new-reporting-requirements-on-national-energy-climate-plans_en
  47. European Commission. (2022b). Sustainable product policy & ecodesign. https://single-market-economy.ec.europa.eu/industry/sustainability/sustainable-product-policy-ecodesign_en
  48. European Standards. (2019a). EN 16798-1:2019. Energy performance of buildings. Ventilation for buildings. Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.
  49. European Standards. (2019b). EN 16798-2:2019: Energy performance of buildings—Ventilation for buildings. Part 2: Interpretation of the requirements in EN 167-8-1—Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor.
  50. European Union. (2018). Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency.
  51. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Danish Technical Press.
  52. Fernandes, S. da C., Pigosso, D. C. A., McAloone, T. C., & Rozenfeld, H. (2020). Towards product-service system oriented to circular economy: A systematic review of value proposition design approaches. Journal of Cleaner Production, 257. DOI: 10.1016/j.jclepro.2020.120507
  53. Fosas, D., Coley, D. A., Natarajan, S., Herrera, M., Fosas de Pando, M., & Ramallo-Gonzalez, A. (2018). Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Building and Environment, 143, 740759. DOI: 10.1016/j.buildenv.2018.07.033
  54. Fox Family Heating & Air. (n.d.). How long should my AC last? https://www.foxfamilyhvac.com/how-long-should-my-ac-last/
  55. Fukawa, Y., Murakami, R., & Ichinose, M. (2021). Field study on occupants’ subjective symptoms attributed to overcooled environments in air-conditioned offices in hot and humid climates of Asia. Building and Environment, 195, 107741. DOI: 10.1016/j.buildenv.2021.107741
  56. Goncalves, V. L., Costanzo, V., Fabbri, K., & Rakha, T. (2022). Overheating assessment in Passivhaus dwellings: The influence of prediction tools. Buildings & Cities, 3(1), 153167. DOI: 10.5334/bc.151
  57. Hendel, M., Azos-Diaz, K., & Tremeac, B. (2017). Behavioral adaptation to heat-related health risks in cities. Energy and Buildings, 152, 823829. DOI: 10.1016/j.enbuild.2016.11.063
  58. Hoyt, T., Arens, E., & Zhang, H. (2015). Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 88, 8996. DOI: 10.1016/j.buildenv.2014.09.010
  59. Hughes, B. R., Chaudhry, H. N., & Ghani, S. A. (2011). A review of sustainable cooling technologies in buildings. Renewable and Sustainable Energy Reviews, 15(6), 31123120. DOI: 10.1016/j.rser.2011.03.032
  60. Huikkola, T., & Kohtamäki, M. (2018). Business models in servitization. In Practices and tools for servitization: Managing service transition (pp. 6181). Palgrave Macmillan. DOI: 10.1007/978-3-319-76517-4_4
  61. IDAE. (2009). Condiciones de aceptación de Procedimientos alternativos a LIDER y CALENER. Instituto para la Diversificación y Ahorro de la Eneridea (IDAE).
  62. IEA. (2017). Space cooling: More access, more comfort, less energy (Information Paper). International Energy Agency (IEA). DOI: https://dx.doi.org/10.1016/j.jamda.2015.03.005
  63. IEA. (2018). The future of cooling. Opportunities for energy-efficient air conditioning. International Energy Agency (IEA). https://www.iea.org/reports/the-future-of-cooling
  64. IEA. (2021). Achievements of energy efficiency appliance and equipment standards and labelling programmes. International Energy Agency (IEA). https://www.iea.org/reports/achievements-of-energy-efficiency-appliance-and-equipment-standards-and-labelling-programmes
  65. IPCC. (2022a). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. DOI: 10.1017/9781009325844.001
  66. IPCC. (2022b). Climate change 2022. Mitigation of climate change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/
  67. IRENA. (2020). Innovation outlook: Thermal energy storage. https://www.irena.org/publications/2020/Nov/Innovation-outlook-Thermal-energy-storage
  68. ISO. (2005). ISO 7730:2005: Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organization for Standardization (ISO). https://www.iso.org/standard/39155.html
  69. ISO. (2017). ISO 52000-1:2017: Energy performance of buildings. Overarching EPB assessment. Part 1: General framework and procedures. International Organization for Standardization (ISO). https://www.iso.org/standard/65601.html
  70. Jay, O., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Ebi, K. L. (2021). Reducing the health effects of hot weather and heat extremes: From personal cooling strategies to green cities. The Lancet, 398(10301), 709724. DOI: 10.1016/S0140-6736(21)01209-5
  71. Jensen, P. B., Laursen, L. N., & Haase, L. M. (2021). Barriers to product longevity: A review of business, product development and user perspectives. Journal of Cleaner Production, 313, 127951. DOI: 10.1016/j.jclepro.2021.127951
  72. Kalanki, A., Winslow, C., & Campbell, I. (2021). Global Cooling Prize: Solving the cooling dilemma (April). RMI. https://rmi.org/wp-content/uploads/dlm_uploads/2021/04/GlobalCoolingPrize_SolvingtheCoolingDilemma.pdf
  73. Karkour, S., Ihara, T., Kuwayama, T., Yamaguchi, K., & Itsubo, N. (2021). Life cycle assessment of residential air conditioners considering the benefits of their use: A case study in Indonesia. Energies, 14(2), 447. DOI: 10.3390/en14020447
  74. Khare, V. R., Garg, R., Mathur, J., & Garg, V. (2021). Thermal comfort analysis of personalized conditioning system and performance assessment with different radiant cooling systems. Energy and Built Environment, July. DOI: 10.1016/j.enbenv.2021.09.001
  75. Khosla, R., Agarwal, A., Sircar, N., & Chatterjee, D. (2021a). The what, why, and how of changing cooling energy consumption in India’s urban households. Environmental Research Letters, 16(4), 044035. DOI: 10.1088/1748-9326/abecbc
  76. Khosla, R., Miranda, N. D., Trotter, P. A., Mazzone, A., Renaldi, R., McElroy, C., Cohen, F., Jani, A., Perera-Salazar, R., & McCulloch, M. (2021b). Cooling for sustainable development. Nature Sustainability, 4, 201208. DOI: 10.1038/s41893-020-00627-w
  77. Khosla, R., Renaldi, R., Mazzone, A., McElroy, C., & Palafox-Alcantar, P. G. (2022). Sustainable cooling in a warming world: Technologies, cultures and circularity. Annual Review of Environment and Resources, 47, 449478. DOI: 10.1146/annurev-environ-120420-085027
  78. Khoukhi, M., & Fezzioui, N. (2012). Thermal comfort design of traditional houses in hot dry region of Algeria. International Journal of Energy and Environmental Engineering. DOI: 10.1186/2251-6832-3-5
  79. Kurpiela, S., & Teuteberg, F. (2022). Strategic planning of product-service systems: A systematic literature review. Journal of Cleaner Production, 338, 130528. DOI: 10.1016/j.jclepro.2022.130528
  80. Lizana, J. (2019). Advanced thermal energy storage and management solutions towards low-carbon buildings [University of Seville]. https://idus.us.es/handle/11441/91357
  81. Lizana, J., Almeida, S. M., Serrano-Jiménez, A., Becerra, J. A., Gil-Báez, M., Barrios-Padura, A., & Chacartegui, R. (2020). Contribution of indoor microenvironments to the daily inhaled dose of air pollutants in children. The importance of bedrooms. Building and Environment, 183, 107188. DOI: 10.1016/j.buildenv.2020.107188
  82. Lizana, J., Chacartegui, R., Barrios-Padura, A., & Ortiz, C. (2018a). Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 82, 37053749. DOI: 10.1016/j.rser.2017.10.093
  83. Lizana, J., Chacartegui, R., Barrios-Padura, A., & Valverde, J. M. (2017). Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Applied Energy, 203, 219239. DOI: 10.1016/j.apenergy.2017.06.008
  84. Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J. M., & Ortiz, C. (2018b). Identification of best available thermal energy storage compounds for low-to-moderate temperature storage applications in buildings. Materiales de Construcción, 68(331), 135. DOI: 10.3989/mc.2018.10517
  85. Lizana, J., Halloran, C. E., Wheeler, S., Amghar, N., Renaldi, R., Killendahl, M., Perez-Maqueda, L. A., McCulloch, M., & Chacartegui, R. (2023). A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification. Energy, 262, 125298. DOI: 10.1016/j.energy.2022.125298
  86. Lizana, J., López-Cabeza, V. P., Renaldi, R., Diz-Mellado, E., Rivera-Gómez, C., & Galán-Marín, C. (2022). Integrating courtyard microclimate in building performance to mitigate extreme urban heat impacts. Sustainable Cities and Society, 78, 103590. DOI: 10.1016/j.scs.2021.103590
  87. López-García, E., Lizana, J., Serrano-Jiménez, A., Díaz-López, C., & Ángela Barrios-Padura. (2022). Monitoring and analytics to measure heat resilience of buildings and support retrofitting by passive cooling. Journal of Building Engineering, 57, 104985. DOI: 10.1016/j.jobe.2022.104985
  88. Lovins, A. B. (2018). How big is the energy efficiency resource? Environmental Research Letters, 13(9), 090401. DOI: 10.1088/1748-9326/aad965
  89. Luo, M., Zhang, H., Wang, Z., Arens, E., Chen, W., Bauman, F. S., & Raftery, P. (2021). Ceiling-fan-integrated air-conditioning: Thermal comfort evaluations. Buildings & Cities, 2(1), 928951. DOI: 10.5334/bc.137
  90. Ma, N., Aviv, D., Guo, H., & Braham, W. W. (2021). Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality. Renewable and Sustainable Energy Reviews, 135, 110436. DOI: 10.1016/j.rser.2020.110436
  91. Malik, A., Bongers, C., McBain, B., Rey-Lescure, O., De Dear, R., Capon, A., Lenzen, M., & Jay, O. (2022). The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: An analysis of energy demand and associated greenhouse gas emissions. The Lancet Planetary Health, 6(4), e301e309. DOI: 10.1016/S2542-5196(22)00042-0
  92. Mehmood, S., Lizana, J., Núñez-Peiró, M., Maximov, S. A., & Friedrich, D. (2022). Resilient cooling pathway for extremely hot climates in southern Asia. Applied Energy, 325, 119811. DOI: 10.1016/j.apenergy.2022.119811
  93. Ministerio de Fomento del Gobierno de España. (2020). Condiciones técnicas de los procedimientos para la evaluación de la eficiencia energética de los edificios. https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/Borrador_Condiciones_tecnicas_de_los_procedimientos_para_la_evaluacion_de_la_eficiencia_energetica.pdf
  94. Miranda, N. D., Renaldi, R., Khosla, R., & McCulloch, M. D. (2021). Bibliometric analysis and landscape of actors in passive cooling technologies. Renewable and Sustainable Energy Reviews, May, 111406. DOI: 10.1016/j.rser.2021.111406
  95. Monroe, A., Asamoah, O., Lam, Y., Koenker, H., Psychas, P., Lynch, M., Ricotta, E., Hornston, S., Berman, A., & Harvey, S. A. (2015). Outdoor-sleeping and other night-time activities in northern Ghana: Implications for residual transmission and malaria prevention. Malaria Journal, 14(1). DOI: 10.1186/s12936-015-0543-4
  96. Mori, A. (2021). How do incumbent companies’ heterogeneous responses affect sustainability transitions? Insights from China’s major incumbent power generators. Environmental Innovation and Societal Transitions, 39, 5572. DOI: 10.1016/j.eist.2021.02.003
  97. Murtagh, N., Badi, S., Shi, Y., Wei, S., & Yu, W. (2022). Living with air-conditioning: Experiences in Dubai, Chongqing and London. Buildings & Cities, 3(1), 1027. DOI: 10.5334/bc.147
  98. Needham, J. (2019). Lullabies for air conditioners: The corporate bliss of Japanese ambient. The Guardian. https://www.theguardian.com/music/2019/feb/19/lullabies-for-air-conditioners-the-corporate-bliss-of-japanese-ambient
  99. Newell, P., & Johnstone, P. (2018). The political economy of incumbency. In J. Skvogaard & A. Van Asselt (Eds.), The politics of fossil fuel subsidies and their reform (pp. 6680). Cambridge University Press. DOI: 10.1017/9781108241946.006
  100. Nishijima, D., Nansai, K., Kagawa, S., & Oguchi, M. (2020). Conflicting consequences of price-induced product lifetime extension in circular economy: The impact on metals, greenhouse gas, and sales of air conditioners. Resources, Conservation and Recycling, 162, 105023. DOI: 10.1016/j.resconrec.2020.105023
  101. Osunmuyiwa, O. O., Payne, S. R., Vigneswara Ilavarasan, P., Peacock, A. D., & Jenkins, D. P. (2020). I cannot live without air conditioning! The role of identity, values and situational factors on cooling consumption patterns in India. Energy Research and Social Science, 69, 101634. DOI: 10.1016/j.erss.2020.101634
  102. Palafox-Alcantar, P. G., Khosla, R., McElroy, C., & Miranda, N. (2022). Circular economy for cooling: A review to develop a systemic framework for production networks. Journal of Cleaner Production, 379(P1), 134738. DOI: 10.1016/j.jclepro.2022.134738
  103. Parkinson, T., Schiavon, S., De Dear, R., & Brager, G. (2021). Overcooling of offices reveals gender inequity in thermal comfort. Scientific Reports, 11(1), 17. DOI: 10.1038/s41598-021-03121-1
  104. Pasut, W., Zhang, H., Arens, E., & Zhai, Y. (2015). Energy-efficient comfort with a heated/cooled chair: Results from human subject tests. Building and Environment, 84, 1021. DOI: 10.1016/j.buildenv.2014.10.026
  105. Pérez-Lombard, L., Ortiz, J., Maestre, I. R., & Coronel, J. F. (2012). Constructing HVAC energy efficiency indicators. Energy and Buildings, 47, 619629. DOI: 10.1016/j.enbuild.2011.12.039
  106. Renaldi, R., Miranda, N. D., Khosla, R., & McCulloch, M. D. (2021). Patent landscape of not-in-kind active cooling technologies between 1998 and 2017. Journal of Cleaner Production, 296, 126507. DOI: 10.1016/j.jclepro.2021.126507
  107. Robbins, S. (2003). Keeping things cool: Air-conditioning in the modern world. OAH Magazine of History, 18(1), 4246. DOI: 10.1093/maghis/18.1.42
  108. Samuelson, H. W., Baniassadi, A., & Gonzalez, P. I. (2020a). Beyond energy savings: Investigating the co-benefits of heat resilient architecture. Energy, 204, 117886. DOI: 10.1016/j.energy.2020.117886
  109. Samuelson, H. W., Baniassadi, A., & Gonzalez, P. I. (2020b). Beyond energy savings: Investigating the co-benefits of heat resilient architecture. Energy. DOI: 10.1016/j.energy.2020.117886
  110. Sanchez-Guevara, C., Peiró Núñez, M., Taylor, J., Mavrogianni, A., & Neila González, J. (2019). Assessing population vulnerability towards summer energy poverty: Case studies of Madrid and London. Energy & Buildings, 190, 132143. DOI: 10.1016/j.enbuild.2019.02.024
  111. Schiavon, S., & Melikov, A. K. (2008). Energy saving and improved comfort by increased air movement. Energy and Buildings, 40(10), 19541960. DOI: 10.1016/j.enbuild.2008.05.001
  112. Schiavon, S., Melikov, A. K., & Sekhar, C. (2010). Energy analysis of the personalized ventilation system in hot and humid climates. Energy and Buildings, 42(5), 699707. DOI: 10.1016/j.enbuild.2009.11.009
  113. Schleich, J., Durand, A., & Brugger, H. (2021). How effective are EU minimum energy performance standards and energy labels for cold appliances? Energy Policy, 149, 112069. DOI: 10.1016/j.enpol.2020.112069
  114. Seppänen, O. A., & Fisk, W. (2006). Some quantitative relations between indoor environmental quality and work performance or health. HVAC and R Research, 12(4), 957973. DOI: 10.1080/10789669.2006.10391446
  115. Serrano-Jiménez, A., Lizana, J., Molina-Huelva, M., & Barrios-Padura, Á. (2020). Indoor environmental quality in social housing with elderly occupants in Spain: Measurement results and retrofit opportunities. Journal of Building Engineering, 30, 101264. DOI: 10.1016/j.jobe.2020.101264
  116. Sherry, D., Nolan, M., Seidel, S., & Andersen, S. O. (n.d.). HFO-1234yf: An examination of projected long-term costs of production. https://www.1234facts.com
  117. Short, A. (2017). The recovery of natural environments in architecture. Routledge. DOI: 10.4324/9781315765853
  118. Shove, E., Walker, G., & Brown, S. (2014a). Material culture, room temperature and the social organisation of thermal energy. Journal of Material Culture, 19(2), 113124. DOI: 10.1177/1359183514525084
  119. Shove, E., Walker, G., & Brown, S. (2014b). Transnational transitions: The diffusion and integration of mechanical cooling. Urban Studies, 51(7), 15061519. DOI: 10.1177/0042098013500084
  120. Siu, C. Y., & Liao, Z. (2020). Is building energy simulation based on TMY representative: A comparative simulation study on doe reference buildings in Toronto with typical year and historical year type weather files. Energy and Buildings, 211. DOI: 10.1016/j.enbuild.2020.109760
  121. Song, Y.-l., Darani, K. S., Khdair, A. I., Abu-Rumman, G., & Kalbasi, R. (2021). A review on conventional passive cooling methods applicable to arid and warm climates considering economic cost and efficiency analysis in resource-based cities. Energy Reports, 7, 27842820. DOI: 10.1016/j.egyr.2021.04.056
  122. Sorrell, S., Gatersleben, B., & Druckman, A. (2020). The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Research and Social Science, 64, 101439. DOI: 10.1016/j.erss.2020.101439
  123. Stirling, A. (2019). How deep is incumbency? A ‘configuring fields’ approach to redistributing and reorienting power in socio-material change. Energy Research and Social Science, 58, 101239. DOI: 10.1016/j.erss.2019.101239
  124. Takakusagi, A. (2021). Theoretical study evaluating renewal of an air-conditioning system. Journal of Building Engineering, 44, 102876. DOI: 10.1016/j.jobe.2021.102876
  125. Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563. DOI: 10.1016/j.softx.2020.100563
  126. Teufl, H., Schuss, M., & Mahdavi, A. (2021). Potential and challenges of a user-centric radiant cooling approach. Energy and Buildings, 246, 111104. DOI: 10.1016/j.enbuild.2021.111104
  127. UK Government. (2021). Improving Energy Performance Certificates: Action plan progress report. https://www.gov.uk/government/publications/improving-energy-performance-certificates-action-plan-progress-report/improving-energy-performance-certificates-action-plan-progress-report
  128. UK Government. (n.d.). Fluorinated gas (F gas): Guidance for users, producers and traders. https://www.gov.uk/government/collections/fluorinated-gas-f-gas-guidance-for-users-producers-and-traders
  129. UN/IEA. (2020). Cooling emissions and policy synthesis report. https://www.unep.org/resources/report/cooling-emissions-and-policy-synthesis-report#:~:text=Action%20under%20the%20Kigali%20Amendment,of%20global%20warming%20by%202100
  130. Velders, G. J. M., Fahey, D. W., Daniel, J. S., McFarland, M., & Andersen, S. O. (2009). The large contribution of projected HFC emissions to future climate forcing. Proceedings of the National Academy of Sciences, USA, 106(27), 1094910954. DOI: 10.1073/pnas.0902817106
  131. von Delft, S., & Zhao, Y. (2021). Business models in process industries: Emerging trends and future research. Technovation, 105, 102195. DOI: 10.1016/j.technovation.2020.102195
  132. Warwicker, B. (2010). Desiccant materials for moisture control in buildings. In Materials for energy efficiency and thermal comfort in buildings. Woodhead. DOI: 10.1533/9781845699277.2.365
  133. WEF. (2021). What do chief heat officers mean for climate change—And why does this new role matter? World Economic Forum (WEF). https://www.weforum.org/agenda/2021/11/what-is-a-chief-heat-officer-job-role/
  134. Whyte, W. H. (1954). The web of word of mouth. Fortune, 50(5), 140143.
  135. Wilhite, H. (2009). The conditioning of comfort. Building Research & Information, 37(1), 8488. DOI: 10.1080/09613210802559943
  136. Wolske, K. S., Gillingham, K. T., & Schultz, P. W. (2020). Peer influence on household energy behaviours. Nature Energy, 5(3), 202212. DOI: 10.1038/s41560-019-0541-9
  137. Wu, D., Hu, B., & Wang, R. Z. (2021). Vapor compression heat pumps with pure low-GWP refrigerants. Renewable and Sustainable Energy Reviews, 138. DOI: 10.1016/j.rser.2020.110571
  138. Zhang, C., Kazanci, O. B., Levinson, R., Heiselberg, P., Olesen, B. W., Chiesa, G., Sodagar, B., Ai, Z., Selkowitz, S., Zinzi, M., Mahdavi, A., Teufl, H., Kolokotroni, M., Salvati, A., Bozonnet, E., Chtioui, F., Salagnac, P., Rahif, R., Attia, S., … Zhang, G. (2021). Resilient cooling strategies—A critical review and qualitative assessment. Energy and Buildings, 251, 111312. DOI: 10.1016/j.enbuild.2021.111312
  139. Zhao, L., Zeng, W., & Yuan, Z. (2015). Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: A life cycle carbon footprint analysis. Journal of Cleaner Production, 100, 262268. DOI: 10.1016/j.jclepro.2015.03.063
DOI: https://doi.org/10.5334/bc.255 | Journal eISSN: 2632-6655
Language: English
Submitted on: May 25, 2022
|
Accepted on: Nov 13, 2022
|
Published on: Dec 22, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Jesus Lizana, Nicole D. Miranda, Larisa Gross, Antonella Mazzone, Francois Cohen, Giovani Palafox-Alcantar, Patrick Fahr, Anant Jani, Renaldi Renaldi, Malcolm McCulloch, Radhika Khosla, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.