References
- 1ACAN. (2021). The carbon footprint of construction. Architects Climate Action Network (ACAN).
www.architectscan.org - 2Adams, J., Hillier-Brown, F. C., Moore, H. J., Lake, A. A., Araujo-Soares, V., White, M., & Summerbell, C. (2016). Searching and synthesising ‘grey literature’ and ‘grey information’ in public health: Critical reflections on three case studies. Systematic Reviews, 5(1),
art. 164 . DOI: 10.1186/s13643-016-0337-y - 3Alberani, V., Pietrangeli, P. D. C., & Mazza, A. M. (1990). The use of grey literature in health sciences: A preliminary survey. Bulletin of the Medical Library Association, 78(4), 358.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225438/ - 4Allwood, J. M., Ashby, M. F., Gutowski, T. G., & Worrell, E. (2011). Material efficiency: A white paper. Resources, Conservation and Recycling, 55(3), 362–381. DOI: 10.1016/j.resconrec.2010.11.002
- 5Anderson, J., & Moncaster, A. (2020). Embodied carbon of concrete in buildings, Part 1: Analysis of published EPD. Buildings and Cities, 1(1). DOI: 10.5334/bc.59
- 6Anderson, S., & Newell, R. (2004). Prospects for carbon capture and storage technologies. Annual Review of Environment and Resources, 29(1), 109–142. DOI: 10.1146/annurev.energy.29.082703.145619
- 7Andersson, R., Fridh, K., Stripple, H., & Häglund, M. (2013). Calculating CO2 uptake for existing concrete structures during and after service life. Environmental Science & Technology, 47(20), 11625–11633. DOI: 10.1021/es401775w
- 8Andersson, R., Stripple, H., Gustafsson, T., & Ljungkrantz, C. (2019). Carbonation as a method to improve climate performance for cement based material. Cement and Concrete Research, 124, 105819. DOI: 10.1016/j.cemconres.2019.105819
- 9Andrew, R. M. (2019). Global CO2 emissions from cement production, 1928–2018. Earth System Science Data, 11(4), 1675–1710. DOI: 10.5194/essd-11-1675-2019
- 10Auger, C. P. (1975). Use of reports literature. Butterworth.
- 11Auger, C. P. (Ed.). (1989). Information sources in grey literature, 2nd ed. Bowker-Saur.
- 12Baker, H., Moncaster, A., Remøy, H., & Wilkinson, S. (2021). Retention not demolition: How heritage thinking can inform carbon reduction. Journal of Architectural Conservation, 27(3), 176–194. DOI: 10.1080/13556207.2021.1948239
- 13Baker, H. E., Moncaster, A. M., & Al Tabbaa, A. (2017). The decision to demolish or adapt on brownfield sites. Proceeding of the Institute of Civil Engineers—Forensic Engineering, 170 FE3, 144–156. DOI: 10.1680/jfoen.16.00026
- 14BEIS. (2018). 2018 UK greenhouse gas emissions, final figures. Department for Business, Energy and Industrial Strategy (BEIS).
https://webarchive.nationalarchives.gov.uk/ukgwa/20190509005513/https://www.gov.uk/government/statistics/energy-consumption-in-the-uk - 15BEIS. (2019). Updated energy and emissions projections. Department for Business, Energy and Industrial Strategy (BEIS).
https://www.gov.uk/government/publications/updated-energy-and-emissions-projections-2019 - 16Benzies, K. M., Premji, S., Hayden, K. A., & Serrett, K. (2006). State-of-the-evidence reviews: Advantages and challenges of including grey literature. Worldviews on Evidence-Based Nursing, 3(2), 55–61. DOI: 10.1111/j.1741-6787.2006.00051.x
- 17Birgisdottir, H., Moncaster, A. M., Wiberg, A. H., Chae, C.-U., Yokoyama, K., Balouktsi, M., Seo, S., Oka, T., Luetzkendorf, T., & Malmqvist, T. (2017). IEA EBC Annex 57 ‘Evaluation of Embodied Energy and CO2eq for Building Construction’. Energy and Buildings, 154, 72–80. DOI: 10.1016/j.enbuild.2017.08.030
- 18BSI. (2011). BS EN 15978:2011: Incorporating corrigendum November 2011. Sustainability of construction works: Assessment of environmental performance—Calculation method. British Standards Institution (BSI).
https://shop.bsigroup.com/products/sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method/standard - 19BSI. (2017). BS EN 16757:2017 Sustainability of construction works—Environmental product declarations—Product category rules for concrete and concrete elements. British Standards Institution (BSI).
- 20Cao, Z., Myers, R. J., Lupton, R. C., Duan, H., Sacchi, R., Zhou, N., Reed Miller, T., Cullen, J. M., Ge, Q., & Liu, G. (2020). The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications, 11(1),
art. 3777 . DOI: 10.1038/s41467-020-17583-w - 21Cementa. (2021). Synpunkter på Boverkets rapport 2020:13 ‘Utveckling av regler om klimatdeklaration av byggnader’ [Comments on the National Board of Housing, Building and Planning’s report 2020: 13 ‘Development of rules on climate declaration of buildings’).
https://www.regeringen.se/49befc/contentassets/eee4559302dc4ac5a904c92df5e836de/cementa.pdf - 22Circular Ecology. (2019). Embodied carbon: The ICE database.
https://circularecology.com/embodied-carbon-footprint-database.html - 23Clark, D. (2013). What colour is your building? Measuring and reducing the energy and carbon footprint of buildings. RIBA Publ.
- 24de Schepper, M., van den Heede, P., van Driessche, I., & de Belie, N. (2014). Life cycle assessment of completely recyclable concrete. Materials, 7(8), 6010–6027. DOI: 10.3390/ma7086010
- 25Dunant, C. F., Drewniok, M. P., Orr, J. J., & Allwood, J. M. (2021). Good early stage design decisions can halve embodied CO2 and lower structural frames’ cost. Structures, 33, 343–354. DOI: 10.1016/j.istruc.2021.04.033
- 26EAC. (2021). Inquiry into sustainability of the built environment: Written evidence. MPA UK Concrete. Environmental Audit Committee (EAC).
https://committees.parliament.uk/work/1147/sustainability-of-the-built-environment/publications/written-evidence/ - 27Fossilfritt Sverige/Fossil Free Sweden. (2021). Road-map for a climate-neutral concrete construction.
https://fossilfrittsverige.se/en/roadmap/the-cement-industry/ - 28Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., le Quéré, C., DBakker, O. C. E., Canadell1, J. G., Ciais1, P., Jackson, R. B., Anthoni1, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., … Zaehle, S. (2019). Global carbon budget 2019. Earth System Science Data, 11(4), 1783–1838. DOI: 10.5194/essd-11-1783-2019
- 29Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., … Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data, 12(4), 3269–3340. DOI: 10.5194/essd-12-3269-2020
- 30Giesekam, J., Barrett, J. R., & Taylor, P. (2016). Construction sector views on low carbon building materials. Building Research & Information, 44(4), 423–444. DOI: 10.1080/09613218.2016.1086872
- 31Giesekam, J., Barrett, J., Taylor, P., & Owen, A. (2014). The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy and Buildings, 78, 202–214. DOI: 10.1016/j.enbuild.2014.04.035
- 32Giesekam, J., & Pomponi, F. (2017). Briefing: Embodied carbon dioxide assessment in buildings: guidance and gaps. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 171(7), 334–341. DOI: 10.1680/jensu.17.00032
- 33Guo, R., Wang, J., Bing, L., Tong, D., Ciais, P., Davis, S. J., Andrew, M., Xi, F., & Liu, Z. (2021). Global CO2 uptake of cement in 1930–2019. Earth System Science Data, 2(October). DOI: 10.5194/essd-13-1791-2021
- 34Hacker, J. N., de Saulles, T. P., Minson, A. J., & Holmes, M. J. (2008). Embodied and operational carbon dioxide emissions from housing: A case study on the effects of thermal mass and climate change. Energy and Buildings, 40(3), 375–384. DOI: 10.1016/j.enbuild.2007.03.005
- 35Haikola, S., Anshelm, J., & Hansson, A. (2021). Limits to climate action—Narratives of bioenergy with carbon capture and storage. Political Geography, 88, 102416. DOI: 10.1016/j.polgeo.2021.102416
- 36Hart, J., D’Amico, B., & Pomponi, F. (2021). Whole-life embodied carbon in multistory buildings: Steel, concrete and timber structures, Journal of Industrial Ecology, 25(2), 403–418. DOI: 10.1111/jiec.13139
- 37Hawkins, W., Cooper, S., Allen, S., Roynon, J., & Ibell, T. (2021). Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure. Structures, 33, 90–98. DOI: 10.1016/j.istruc.2020.12.013
- 38Hertwich, E., Lifset, R., Pauliuk, S., & Heeren, N. (2020). Resource efficiency and climate change: Material efficiency strategies for a low-carbon future. A report of the International Resource Panel (IRP).
http://hdl.handle.net/20.500.11822/34351 - 39Hughes, M., Pope, P., Palmer, J., & Armitage, P. (2016). UK housing stock models using SAP: The case for heating regime change. Science Journal of Energy Engineering, 4(2), 12–22. DOI: 10.11648/j.sjee.20160402.11
- 40Huuhka, S., & Lahdensivu, J. (2016). Statistical and geographical study on demolished buildings. Building Research & Information, 44(1), 73–96. DOI: 10.1080/09613218.2014.980101
- 41ICE. (2015). Embodied energy and carbon. Institution of Civil Engineers (ICE).
https://www.ice.org.uk/knowledge-and-resources/briefing-sheet/embodied-energy-and-carbon - 42ICE. (2022). Low carbon concrete routemap. Institution of Civil Engineers (ICE).
https://www.ice.org.uk/media/200i0yqd/2022-04-26-low-carbon-concrete-routemap-final_rev.pdf - 43IEA. (2021). Cement. International Energy Agency (IEA).
https://www.iea.org/reports/cement - 44IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (Eds.)). Cambridge University Press.
https://www.ipcc.ch/report/ar6/wg1/ - 45IStructE. (2011). A short guide to embodied carbon in building structures. Institution of Structural Engineers (IStructE).
https://www.istructe.org/IStructE/media/Public/Resources/a-short-guide-to-embodied-carbon-in-building-structures.pdf - 46IStructE. (2020). How to calculate embodied carbon. Institution of Structural Engineers (IStructE).
https://www.istructe.org/IStructE/media/Public/Resources/istructe-how-to-calculate-embodied-carbon.pdf - 47IStructE. (2022). How to calculate embodied carbon. Institution of Structural Engineers (IStructE).
https://www.istructe.org/resources/guidance/how-to-calculate-embodied-carbon/ - 48Jusselme, T., Rey, E., & Andersen, M. (2020). Surveying the environmental life-cycle performance assessments: Practice and context at early building design stages. Sustainable Cities and Society, 52, 101879. DOI: 10.1016/j.scs.2019.101879
- 49Lane, J., Greig, C., & Garnett, A. (2021). Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nature Climate Change, 11, 925–936. DOI: 10.1038/s41558-021-01175-7
- 50LETI. (2020). Embodied carbon primer. London Energy Transformation Initiative (LETI).
https://www.leti.london/ecp - 51Mahood, Q., van Eerd, D., & Irvin, E. (2014). Searching for grey literature for systematic reviews: Challenges and benefits. Research Synthesis Methods, 5(3), 221–234. DOI: 10.1002/jrsm.1106
- 52Malmqvist, T., Nehasilova, M., Moncaster, A., Birgisdottir, H., Nygaard Rasmussen, F., Houlihan Wiberg, A., & Potting, J. (2018). Design and construction strategies for reducing embodied impacts from buildings—Case study analysis. Energy and Buildings, 166, 35–47. DOI: 10.1016/j.enbuild.2018.01.033
- 53Matter, J. M., & Kelemen, P. B. (2009). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 2(12), 837–841. DOI: 10.1038/ngeo683
- 54MHCLG. (2020). English Housing Survey data on stock profile. Ministry of Housing, Communities & Local Government (MHCLG).
https://www.gov.uk/government/statistical-data-sets/stock-profile - 55Moncaster, A. M., Anderson, J., & Mulligan, H. (2021). Supporting the development of quality data: Availability, quality and use of construction product LCA data for Ireland, Italy and Croatia. A report for the Irish, Italian and Croatian Green Building Councils.
https://www.igbc.ie/wp-content/uploads/2021/05/LIFE-Levels-CAR-Report_revA_29April-2021_clean.pdf - 56Moncaster, A. M., Hinds, D., Cruickshank, H., Guthrie, P. M., Crishna, N., Baker, K., Beckmann, K., & Jowitt, P. W. (2010). A key issue: Knowledge exchange between academia and industry. Proceedings of the Institute of Civil Engineers—Engineering Sustainability, 163(3), 167–174. DOI: 10.1680/ensu.2010.163.3.167
- 57Monteiro, I., Branco, F. A., Brito, J. de, & Neves, R. (2012). Statistical analysis of the carbonation coefficient in open air concrete structures. Construction and Building Materials, 29, 263–269. DOI: 10.1016/j.conbuildmat.2011.10.028
- 58MPA. (2012). Zero carbon performance: Cost-effective concrete and masonry homes. Mineral Products Association (MPA).
https://www.concretecentre.com/Resources/Publications/Zero-Carbon-Performance-cost-effective-concrete.aspx - 59MPA. (2015a). Ahead of the Game magazine. Mineral Products Association (MPA).
https://www.concretecentre.com/Resources/Publications/This-is-Concrete-Ahead-of-the-Game.aspx - 60MPA. (2015b). Visual concrete: Guidance on specification of formed concrete finishes. Mineral Products Association (MPA).
https://www.concretecentre.com/Publications-Software/Publications/Visual-Concrete.aspx - 61MPA. (2016). Whole life carbon and buildings: Concrete solutions for reducing embodied and operational CO2. Mineral Products Association (MPA).
https://www.concretecentre.com/Publications-Software/Publications/Whole-life-Carbon-and-Buildings.aspx - 62MPA. (2019). Thermal mass explained. Mineral Products Association (MPA).
https://www.concretecentre.com/Resources/Publications/Thermal-Mass-Explained.aspx - 63MPA. (2020). Roadmap to beyond net zero. Mineral Products Association (MPA).
- 64O’Connor, J. (2004). Survey on actual service lives for North American buildings. Woodframe Housing Durability and Disaster Issues.
http://www.softwoodlumber.org/pdfs/SurveyonActualServiceLives.pdf - 65Orr, J., Drewniok, M. P., Walker, I., Ibell, T., Copping, A., & Emmitt, S. (2019). Minimising energy in construction: Practitioners’ views on material efficiency. Resources, Conservation and Recycling, 140, 125–136. DOI: 10.1016/j.resconrec.2018.09.015
- 66Pappas, C., & Williams, I. (2011). Grey literature: Its emerging importance. Journal of Hospital Librarianship, 11(3), 228–234. DOI: 10.1080/15323269.2011.587100
- 67Quéré, C., Andrew, R., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P., Ivar Korsbakken, J., Peters, G., Canadell, J., Arneth, A., Arora, V., Barbero, L., Bastos, A., Bopp, L., Ciais, P., Chini, L., Ciais, P., Doney, S., … Zheng, B. (2018). Global carbon budget 2018. Earth System Science Data, 10(4), 2141–2194. DOI: 10.5194/essd-10-2141-2018
- 68RAEng & NEPC. (2021). Decarbonising construction: Building a new net zero industry. Royal Academy of Engineering (RAEng) & National Engineering Policy Centre (NEPC).
https://t.co/NCLzMgb2V6?amp=1 - 69Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P. F., & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68(1), 333–359. DOI: 10.1016/j.rser.2016.09.107
- 70Rasmussen, F. N., Malmqvist, T., & Birgisdóttir, H. (2020). Drivers, barriers and development needs for LCA in the Nordic building sector—A survey among professionals. IOP Conference Series: Earth and Environmental Science, 588(3), 032022. DOI: 10.1088/1755-1315/588/3/032022
- 71Reilly, A., & Kinnane, O. (2017). The impact of thermal mass on building energy consumption. Applied Energy, 198, 108–121. DOI: 10.1016/j.apenergy.2017.04.024
- 72RIBA. (2017). Embodied and whole life carbon assessment for architects. The Royal Institute of British Architects (RIBA).
https://www.architecture.com/knowledge-and-resources/resources-landing-page/whole-life-carbon-assessment-for-architects - 73RICS. (2015).
Methodology to calculate embodied carbon of materials . In RICS QS & Construction Standards. The Royal Institution of Chartered Surveyors (RICS).https://www.igbc.ie/wp-content/uploads/2015/02/RICS-Methodology_embodied_carbon_materials_final-1st-edition.pdf - 74RICS. (2017). RICS professional statement: Whole life carbon assessment for the built environment. The Royal Institution of Chartered Surveyors (RICS).
https://www.rics.org/globalassets/rics-website/media/news/whole-life-carbon-assessment-for-the--built-environment-november-2017.pdf - 75Rothstein, H., & Hopewell, S. (2009).
Grey literature . In Sage handbook of research synthesis and meta-analysis (pp. 103–126). Russell Sage Foundation. - 76Ruuska, A., & Häkkinen, T. (2014). Material efficiency of building construction. Buildings, 4(3). DOI: 10.3390/buildings4030266
- 77Sacchi, R., & Bauer, C. (2020). Should we neglect cement carbonation in life cycle inventory databases? International Journal of Life Cycle Assessment, 25(8), 1532–1544. DOI: 10.1007/s11367-020-01776-y
- 78Sáez del Bosque, I. F., Van den Heede, P., De Belie, N., Sánchez de Rojas, M. I., & Medina, C. (2020). Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content. Construction and Building Materials, 234, 117336. DOI: 10.1016/j.conbuildmat.2019.117336
- 79Schlanbusch, R. D., Fufa, S. M., Häkkinen, T., Vares, S., Birgisdottir, H., & Ylmén, P. (2016). Experiences with LCA in the Nordic building industry—Challenges, needs and solutions. Energy Procedia, 96, 82–93. DOI: 10.1016/j.egypro.2016.09.106
- 80Shanks, W., Dunant, C. F., Drewniok, M. P., Lupton, R. C., Serrenho, A., & Allwood, J. M. (2019). How much cement can we do without? Lessons from cement material flows in the UK. Resources, Conservation and Recycling, 141, 441–454. DOI: 10.1016/j.resconrec.2018.11.002
- 81Sharston, R., & Murray, S. (2020). The combined effects of thermal mass and insulation on energy performance in concrete office buildings. Advances in Building Energy Research, 14(3), 322–337. DOI: 10.1080/17512549.2018.1547220
- 82Simonen, K., Rodriguez, B. X., & De Wolf, C. (2017). Benchmarking the embodied carbon of buildings. Technology|Architecture + Design, 1(2), 208–218. DOI: 10.1080/24751448.2017.1354623
- 83Svensk Betong. (2021). Svensk Betong svar på remiss Fi 2020/02715 Remiss av Boverkets rapport Utveckling av regler om klimatdeklaration av byggnader [Svensk Betong responds to consultation Fi 2020/02715 Referral of the National Board of Housing, Building and Planning’s report Development of rules on climate declaration of buildings).
https://www.regeringen.se/49befc/contentassets/eee4559302dc4ac5a904c92df5e836de/svensk-betong.pdf - 84Thomsen, A., & van der Flier, K. (2011). Understanding obsolescence: A conceptual model for buildings. Building Research & Information, 39(4), 352–362. DOI: 10.1080/09613218.2011.576328
- 85UKGBC. (2021). Net zero whole life carbon roadmap: A pathway to net zero for the UK built environment. UK Green Building Council (UKGBC).
https://www.ukgbc.org/ukgbc-work/net-zero-whole-life-roadmap-for-the-built-environment/ - 86UNEP. (2021). 2021 Global status report for buildings and construction. United Nations Environment Programme (UNEP).
https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction - 87USGS. (2020). Mineral commodity summaries. United States Geographical Survey (USGS).
https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-cement.pdf - 88Warszawski, L., Kriegler, E., Lenton, T. M., Gaffney, O., Jacob, D., Klingenfeld, D., & Rockström, J. (2021). All options, not silver bullets, needed to limit global warming to 1.5°C: A scenario appraisal. Environmental Research Letters, 16(6), 064037. DOI: 10.1088/1748-9326/abfeec
- 89WGBC. (2019). Bringing embodied carbon upfront: Coordinated action for the building and construction sector to tackle embodied carbon. World Green Building Council (WGBC).
https://www.worldgbc.org/bringing-embodied-carbon-upfront-report-webform - 90World Bank. (2020). Urban population (% of total population).
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?end=2018&start=2014&view=chart - 91Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., & Wei, W. (2016). Substantial global carbon uptake by cement carbonation. Nature Geoscience, 9, 880–883. DOI: 10.1038/ngeo2840
- 92Zheng, X. W., Li, H. N., & Gardoni, P. (2021). Life-cycle probabilistic seismic risk assessment of high-rise buildings considering carbonation induced deterioration. Engineering Structures, 231, 111752. DOI: 10.1016/j.engstruct.2020.111752
- 93Zhou, W., Moncaster, A., Reiner, D. M., & Guthrie, P. (2019). Estimating lifetimes and stock turnover dynamics of urban residential buildings in China. Sustainability (Switzerland), 11(13), 3720. DOI: 10.3390/su11133720
- 94Zhou, W., Moncaster, A. M., O’Neill, E., Reiner, D., Wang, X., & Guthrie, P. (2022). Estimating past and future annual embodied energy of the urban residential building stock in China, Energy Policy, 165, 112932. DOI: 10.1016/j.enpol.2022.112932
