Have a personal or library account? Click to login
Embodied carbon of concrete in buildings, Part 2: are the messages accurate? Cover

Embodied carbon of concrete in buildings, Part 2: are the messages accurate?

Open Access
|May 2022

References

  1. 1ACAN. (2021). The carbon footprint of construction. Architects Climate Action Network (ACAN). www.architectscan.org
  2. 2Adams, J., Hillier-Brown, F. C., Moore, H. J., Lake, A. A., Araujo-Soares, V., White, M., & Summerbell, C. (2016). Searching and synthesising ‘grey literature’ and ‘grey information’ in public health: Critical reflections on three case studies. Systematic Reviews, 5(1), art. 164. DOI: 10.1186/s13643-016-0337-y
  3. 3Alberani, V., Pietrangeli, P. D. C., & Mazza, A. M. (1990). The use of grey literature in health sciences: A preliminary survey. Bulletin of the Medical Library Association, 78(4), 358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225438/
  4. 4Allwood, J. M., Ashby, M. F., Gutowski, T. G., & Worrell, E. (2011). Material efficiency: A white paper. Resources, Conservation and Recycling, 55(3), 362381. DOI: 10.1016/j.resconrec.2010.11.002
  5. 5Anderson, J., & Moncaster, A. (2020). Embodied carbon of concrete in buildings, Part 1: Analysis of published EPD. Buildings and Cities, 1(1). DOI: 10.5334/bc.59
  6. 6Anderson, S., & Newell, R. (2004). Prospects for carbon capture and storage technologies. Annual Review of Environment and Resources, 29(1), 109142. DOI: 10.1146/annurev.energy.29.082703.145619
  7. 7Andersson, R., Fridh, K., Stripple, H., & Häglund, M. (2013). Calculating CO2 uptake for existing concrete structures during and after service life. Environmental Science & Technology, 47(20), 1162511633. DOI: 10.1021/es401775w
  8. 8Andersson, R., Stripple, H., Gustafsson, T., & Ljungkrantz, C. (2019). Carbonation as a method to improve climate performance for cement based material. Cement and Concrete Research, 124, 105819. DOI: 10.1016/j.cemconres.2019.105819
  9. 9Andrew, R. M. (2019). Global CO2 emissions from cement production, 1928–2018. Earth System Science Data, 11(4), 16751710. DOI: 10.5194/essd-11-1675-2019
  10. 10Auger, C. P. (1975). Use of reports literature. Butterworth.
  11. 11Auger, C. P. (Ed.). (1989). Information sources in grey literature, 2nd ed. Bowker-Saur.
  12. 12Baker, H., Moncaster, A., Remøy, H., & Wilkinson, S. (2021). Retention not demolition: How heritage thinking can inform carbon reduction. Journal of Architectural Conservation, 27(3), 176194. DOI: 10.1080/13556207.2021.1948239
  13. 13Baker, H. E., Moncaster, A. M., & Al Tabbaa, A. (2017). The decision to demolish or adapt on brownfield sites. Proceeding of the Institute of Civil Engineers—Forensic Engineering, 170 FE3, 144156. DOI: 10.1680/jfoen.16.00026
  14. 14BEIS. (2018). 2018 UK greenhouse gas emissions, final figures. Department for Business, Energy and Industrial Strategy (BEIS). https://webarchive.nationalarchives.gov.uk/ukgwa/20190509005513/https://www.gov.uk/government/statistics/energy-consumption-in-the-uk
  15. 15BEIS. (2019). Updated energy and emissions projections. Department for Business, Energy and Industrial Strategy (BEIS). https://www.gov.uk/government/publications/updated-energy-and-emissions-projections-2019
  16. 16Benzies, K. M., Premji, S., Hayden, K. A., & Serrett, K. (2006). State-of-the-evidence reviews: Advantages and challenges of including grey literature. Worldviews on Evidence-Based Nursing, 3(2), 5561. DOI: 10.1111/j.1741-6787.2006.00051.x
  17. 17Birgisdottir, H., Moncaster, A. M., Wiberg, A. H., Chae, C.-U., Yokoyama, K., Balouktsi, M., Seo, S., Oka, T., Luetzkendorf, T., & Malmqvist, T. (2017). IEA EBC Annex 57 ‘Evaluation of Embodied Energy and CO2eq for Building Construction’. Energy and Buildings, 154, 7280. DOI: 10.1016/j.enbuild.2017.08.030
  18. 18BSI. (2011). BS EN 15978:2011: Incorporating corrigendum November 2011. Sustainability of construction works: Assessment of environmental performance—Calculation method. British Standards Institution (BSI). https://shop.bsigroup.com/products/sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method/standard
  19. 19BSI. (2017). BS EN 16757:2017 Sustainability of construction works—Environmental product declarations—Product category rules for concrete and concrete elements. British Standards Institution (BSI).
  20. 20Cao, Z., Myers, R. J., Lupton, R. C., Duan, H., Sacchi, R., Zhou, N., Reed Miller, T., Cullen, J. M., Ge, Q., & Liu, G. (2020). The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications, 11(1), art. 3777. DOI: 10.1038/s41467-020-17583-w
  21. 21Cementa. (2021). Synpunkter på Boverkets rapport 2020:13 ‘Utveckling av regler om klimatdeklaration av byggnader’ [Comments on the National Board of Housing, Building and Planning’s report 2020: 13 ‘Development of rules on climate declaration of buildings’). https://www.regeringen.se/49befc/contentassets/eee4559302dc4ac5a904c92df5e836de/cementa.pdf
  22. 22Circular Ecology. (2019). Embodied carbon: The ICE database. https://circularecology.com/embodied-carbon-footprint-database.html
  23. 23Clark, D. (2013). What colour is your building? Measuring and reducing the energy and carbon footprint of buildings. RIBA Publ.
  24. 24de Schepper, M., van den Heede, P., van Driessche, I., & de Belie, N. (2014). Life cycle assessment of completely recyclable concrete. Materials, 7(8), 60106027. DOI: 10.3390/ma7086010
  25. 25Dunant, C. F., Drewniok, M. P., Orr, J. J., & Allwood, J. M. (2021). Good early stage design decisions can halve embodied CO2 and lower structural frames’ cost. Structures, 33, 343354. DOI: 10.1016/j.istruc.2021.04.033
  26. 26EAC. (2021). Inquiry into sustainability of the built environment: Written evidence. MPA UK Concrete. Environmental Audit Committee (EAC). https://committees.parliament.uk/work/1147/sustainability-of-the-built-environment/publications/written-evidence/
  27. 27Fossilfritt Sverige/Fossil Free Sweden. (2021). Road-map for a climate-neutral concrete construction. https://fossilfrittsverige.se/en/roadmap/the-cement-industry/
  28. 28Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., le Quéré, C., DBakker, O. C. E., Canadell1, J. G., Ciais1, P., Jackson, R. B., Anthoni1, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., … Zaehle, S. (2019). Global carbon budget 2019. Earth System Science Data, 11(4), 17831838. DOI: 10.5194/essd-11-1783-2019
  29. 29Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., … Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data, 12(4), 32693340. DOI: 10.5194/essd-12-3269-2020
  30. 30Giesekam, J., Barrett, J. R., & Taylor, P. (2016). Construction sector views on low carbon building materials. Building Research & Information, 44(4), 423444. DOI: 10.1080/09613218.2016.1086872
  31. 31Giesekam, J., Barrett, J., Taylor, P., & Owen, A. (2014). The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy and Buildings, 78, 202214. DOI: 10.1016/j.enbuild.2014.04.035
  32. 32Giesekam, J., & Pomponi, F. (2017). Briefing: Embodied carbon dioxide assessment in buildings: guidance and gaps. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 171(7), 334341. DOI: 10.1680/jensu.17.00032
  33. 33Guo, R., Wang, J., Bing, L., Tong, D., Ciais, P., Davis, S. J., Andrew, M., Xi, F., & Liu, Z. (2021). Global CO2 uptake of cement in 1930–2019. Earth System Science Data, 2(October). DOI: 10.5194/essd-13-1791-2021
  34. 34Hacker, J. N., de Saulles, T. P., Minson, A. J., & Holmes, M. J. (2008). Embodied and operational carbon dioxide emissions from housing: A case study on the effects of thermal mass and climate change. Energy and Buildings, 40(3), 375384. DOI: 10.1016/j.enbuild.2007.03.005
  35. 35Haikola, S., Anshelm, J., & Hansson, A. (2021). Limits to climate action—Narratives of bioenergy with carbon capture and storage. Political Geography, 88, 102416. DOI: 10.1016/j.polgeo.2021.102416
  36. 36Hart, J., D’Amico, B., & Pomponi, F. (2021). Whole-life embodied carbon in multistory buildings: Steel, concrete and timber structures, Journal of Industrial Ecology, 25(2), 403418. DOI: 10.1111/jiec.13139
  37. 37Hawkins, W., Cooper, S., Allen, S., Roynon, J., & Ibell, T. (2021). Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure. Structures, 33, 9098. DOI: 10.1016/j.istruc.2020.12.013
  38. 38Hertwich, E., Lifset, R., Pauliuk, S., & Heeren, N. (2020). Resource efficiency and climate change: Material efficiency strategies for a low-carbon future. A report of the International Resource Panel (IRP). http://hdl.handle.net/20.500.11822/34351
  39. 39Hughes, M., Pope, P., Palmer, J., & Armitage, P. (2016). UK housing stock models using SAP: The case for heating regime change. Science Journal of Energy Engineering, 4(2), 1222. DOI: 10.11648/j.sjee.20160402.11
  40. 40Huuhka, S., & Lahdensivu, J. (2016). Statistical and geographical study on demolished buildings. Building Research & Information, 44(1), 7396. DOI: 10.1080/09613218.2014.980101
  41. 41ICE. (2015). Embodied energy and carbon. Institution of Civil Engineers (ICE). https://www.ice.org.uk/knowledge-and-resources/briefing-sheet/embodied-energy-and-carbon
  42. 42ICE. (2022). Low carbon concrete routemap. Institution of Civil Engineers (ICE). https://www.ice.org.uk/media/200i0yqd/2022-04-26-low-carbon-concrete-routemap-final_rev.pdf
  43. 43IEA. (2021). Cement. International Energy Agency (IEA). https://www.iea.org/reports/cement
  44. 44IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (Eds.)). Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/
  45. 45IStructE. (2011). A short guide to embodied carbon in building structures. Institution of Structural Engineers (IStructE). https://www.istructe.org/IStructE/media/Public/Resources/a-short-guide-to-embodied-carbon-in-building-structures.pdf
  46. 46IStructE. (2020). How to calculate embodied carbon. Institution of Structural Engineers (IStructE). https://www.istructe.org/IStructE/media/Public/Resources/istructe-how-to-calculate-embodied-carbon.pdf
  47. 47IStructE. (2022). How to calculate embodied carbon. Institution of Structural Engineers (IStructE). https://www.istructe.org/resources/guidance/how-to-calculate-embodied-carbon/
  48. 48Jusselme, T., Rey, E., & Andersen, M. (2020). Surveying the environmental life-cycle performance assessments: Practice and context at early building design stages. Sustainable Cities and Society, 52, 101879. DOI: 10.1016/j.scs.2019.101879
  49. 49Lane, J., Greig, C., & Garnett, A. (2021). Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nature Climate Change, 11, 925936. DOI: 10.1038/s41558-021-01175-7
  50. 50LETI. (2020). Embodied carbon primer. London Energy Transformation Initiative (LETI). https://www.leti.london/ecp
  51. 51Mahood, Q., van Eerd, D., & Irvin, E. (2014). Searching for grey literature for systematic reviews: Challenges and benefits. Research Synthesis Methods, 5(3), 221234. DOI: 10.1002/jrsm.1106
  52. 52Malmqvist, T., Nehasilova, M., Moncaster, A., Birgisdottir, H., Nygaard Rasmussen, F., Houlihan Wiberg, A., & Potting, J. (2018). Design and construction strategies for reducing embodied impacts from buildings—Case study analysis. Energy and Buildings, 166, 3547. DOI: 10.1016/j.enbuild.2018.01.033
  53. 53Matter, J. M., & Kelemen, P. B. (2009). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 2(12), 837841. DOI: 10.1038/ngeo683
  54. 54MHCLG. (2020). English Housing Survey data on stock profile. Ministry of Housing, Communities & Local Government (MHCLG). https://www.gov.uk/government/statistical-data-sets/stock-profile
  55. 55Moncaster, A. M., Anderson, J., & Mulligan, H. (2021). Supporting the development of quality data: Availability, quality and use of construction product LCA data for Ireland, Italy and Croatia. A report for the Irish, Italian and Croatian Green Building Councils. https://www.igbc.ie/wp-content/uploads/2021/05/LIFE-Levels-CAR-Report_revA_29April-2021_clean.pdf
  56. 56Moncaster, A. M., Hinds, D., Cruickshank, H., Guthrie, P. M., Crishna, N., Baker, K., Beckmann, K., & Jowitt, P. W. (2010). A key issue: Knowledge exchange between academia and industry. Proceedings of the Institute of Civil Engineers—Engineering Sustainability, 163(3), 167174. DOI: 10.1680/ensu.2010.163.3.167
  57. 57Monteiro, I., Branco, F. A., Brito, J. de, & Neves, R. (2012). Statistical analysis of the carbonation coefficient in open air concrete structures. Construction and Building Materials, 29, 263269. DOI: 10.1016/j.conbuildmat.2011.10.028
  58. 58MPA. (2012). Zero carbon performance: Cost-effective concrete and masonry homes. Mineral Products Association (MPA). https://www.concretecentre.com/Resources/Publications/Zero-Carbon-Performance-cost-effective-concrete.aspx
  59. 59MPA. (2015a). Ahead of the Game magazine. Mineral Products Association (MPA). https://www.concretecentre.com/Resources/Publications/This-is-Concrete-Ahead-of-the-Game.aspx
  60. 60MPA. (2015b). Visual concrete: Guidance on specification of formed concrete finishes. Mineral Products Association (MPA). https://www.concretecentre.com/Publications-Software/Publications/Visual-Concrete.aspx
  61. 61MPA. (2016). Whole life carbon and buildings: Concrete solutions for reducing embodied and operational CO2. Mineral Products Association (MPA). https://www.concretecentre.com/Publications-Software/Publications/Whole-life-Carbon-and-Buildings.aspx
  62. 62MPA. (2019). Thermal mass explained. Mineral Products Association (MPA). https://www.concretecentre.com/Resources/Publications/Thermal-Mass-Explained.aspx
  63. 63MPA. (2020). Roadmap to beyond net zero. Mineral Products Association (MPA).
  64. 64O’Connor, J. (2004). Survey on actual service lives for North American buildings. Woodframe Housing Durability and Disaster Issues. http://www.softwoodlumber.org/pdfs/SurveyonActualServiceLives.pdf
  65. 65Orr, J., Drewniok, M. P., Walker, I., Ibell, T., Copping, A., & Emmitt, S. (2019). Minimising energy in construction: Practitioners’ views on material efficiency. Resources, Conservation and Recycling, 140, 125136. DOI: 10.1016/j.resconrec.2018.09.015
  66. 66Pappas, C., & Williams, I. (2011). Grey literature: Its emerging importance. Journal of Hospital Librarianship, 11(3), 228234. DOI: 10.1080/15323269.2011.587100
  67. 67Quéré, C., Andrew, R., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P., Ivar Korsbakken, J., Peters, G., Canadell, J., Arneth, A., Arora, V., Barbero, L., Bastos, A., Bopp, L., Ciais, P., Chini, L., Ciais, P., Doney, S., … Zheng, B. (2018). Global carbon budget 2018. Earth System Science Data, 10(4), 21412194. DOI: 10.5194/essd-10-2141-2018
  68. 68RAEng & NEPC. (2021). Decarbonising construction: Building a new net zero industry. Royal Academy of Engineering (RAEng) & National Engineering Policy Centre (NEPC). https://t.co/NCLzMgb2V6?amp=1
  69. 69Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P. F., & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68(1), 333359. DOI: 10.1016/j.rser.2016.09.107
  70. 70Rasmussen, F. N., Malmqvist, T., & Birgisdóttir, H. (2020). Drivers, barriers and development needs for LCA in the Nordic building sector—A survey among professionals. IOP Conference Series: Earth and Environmental Science, 588(3), 032022. DOI: 10.1088/1755-1315/588/3/032022
  71. 71Reilly, A., & Kinnane, O. (2017). The impact of thermal mass on building energy consumption. Applied Energy, 198, 108121. DOI: 10.1016/j.apenergy.2017.04.024
  72. 72RIBA. (2017). Embodied and whole life carbon assessment for architects. The Royal Institute of British Architects (RIBA). https://www.architecture.com/knowledge-and-resources/resources-landing-page/whole-life-carbon-assessment-for-architects
  73. 73RICS. (2015). Methodology to calculate embodied carbon of materials. In RICS QS & Construction Standards. The Royal Institution of Chartered Surveyors (RICS). https://www.igbc.ie/wp-content/uploads/2015/02/RICS-Methodology_embodied_carbon_materials_final-1st-edition.pdf
  74. 74RICS. (2017). RICS professional statement: Whole life carbon assessment for the built environment. The Royal Institution of Chartered Surveyors (RICS). https://www.rics.org/globalassets/rics-website/media/news/whole-life-carbon-assessment-for-the--built-environment-november-2017.pdf
  75. 75Rothstein, H., & Hopewell, S. (2009). Grey literature. In Sage handbook of research synthesis and meta-analysis (pp. 103126). Russell Sage Foundation.
  76. 76Ruuska, A., & Häkkinen, T. (2014). Material efficiency of building construction. Buildings, 4(3). DOI: 10.3390/buildings4030266
  77. 77Sacchi, R., & Bauer, C. (2020). Should we neglect cement carbonation in life cycle inventory databases? International Journal of Life Cycle Assessment, 25(8), 15321544. DOI: 10.1007/s11367-020-01776-y
  78. 78Sáez del Bosque, I. F., Van den Heede, P., De Belie, N., Sánchez de Rojas, M. I., & Medina, C. (2020). Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content. Construction and Building Materials, 234, 117336. DOI: 10.1016/j.conbuildmat.2019.117336
  79. 79Schlanbusch, R. D., Fufa, S. M., Häkkinen, T., Vares, S., Birgisdottir, H., & Ylmén, P. (2016). Experiences with LCA in the Nordic building industry—Challenges, needs and solutions. Energy Procedia, 96, 8293. DOI: 10.1016/j.egypro.2016.09.106
  80. 80Shanks, W., Dunant, C. F., Drewniok, M. P., Lupton, R. C., Serrenho, A., & Allwood, J. M. (2019). How much cement can we do without? Lessons from cement material flows in the UK. Resources, Conservation and Recycling, 141, 441454. DOI: 10.1016/j.resconrec.2018.11.002
  81. 81Sharston, R., & Murray, S. (2020). The combined effects of thermal mass and insulation on energy performance in concrete office buildings. Advances in Building Energy Research, 14(3), 322337. DOI: 10.1080/17512549.2018.1547220
  82. 82Simonen, K., Rodriguez, B. X., & De Wolf, C. (2017). Benchmarking the embodied carbon of buildings. Technology|Architecture + Design, 1(2), 208218. DOI: 10.1080/24751448.2017.1354623
  83. 83Svensk Betong. (2021). Svensk Betong svar på remiss Fi 2020/02715 Remiss av Boverkets rapport Utveckling av regler om klimatdeklaration av byggnader [Svensk Betong responds to consultation Fi 2020/02715 Referral of the National Board of Housing, Building and Planning’s report Development of rules on climate declaration of buildings). https://www.regeringen.se/49befc/contentassets/eee4559302dc4ac5a904c92df5e836de/svensk-betong.pdf
  84. 84Thomsen, A., & van der Flier, K. (2011). Understanding obsolescence: A conceptual model for buildings. Building Research & Information, 39(4), 352362. DOI: 10.1080/09613218.2011.576328
  85. 85UKGBC. (2021). Net zero whole life carbon roadmap: A pathway to net zero for the UK built environment. UK Green Building Council (UKGBC). https://www.ukgbc.org/ukgbc-work/net-zero-whole-life-roadmap-for-the-built-environment/
  86. 86UNEP. (2021). 2021 Global status report for buildings and construction. United Nations Environment Programme (UNEP). https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction
  87. 87USGS. (2020). Mineral commodity summaries. United States Geographical Survey (USGS). https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-cement.pdf
  88. 88Warszawski, L., Kriegler, E., Lenton, T. M., Gaffney, O., Jacob, D., Klingenfeld, D., & Rockström, J. (2021). All options, not silver bullets, needed to limit global warming to 1.5°C: A scenario appraisal. Environmental Research Letters, 16(6), 064037. DOI: 10.1088/1748-9326/abfeec
  89. 89WGBC. (2019). Bringing embodied carbon upfront: Coordinated action for the building and construction sector to tackle embodied carbon. World Green Building Council (WGBC). https://www.worldgbc.org/bringing-embodied-carbon-upfront-report-webform
  90. 90World Bank. (2020). Urban population (% of total population). https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?end=2018&start=2014&view=chart
  91. 91Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., & Wei, W. (2016). Substantial global carbon uptake by cement carbonation. Nature Geoscience, 9, 880883. DOI: 10.1038/ngeo2840
  92. 92Zheng, X. W., Li, H. N., & Gardoni, P. (2021). Life-cycle probabilistic seismic risk assessment of high-rise buildings considering carbonation induced deterioration. Engineering Structures, 231, 111752. DOI: 10.1016/j.engstruct.2020.111752
  93. 93Zhou, W., Moncaster, A., Reiner, D. M., & Guthrie, P. (2019). Estimating lifetimes and stock turnover dynamics of urban residential buildings in China. Sustainability (Switzerland), 11(13), 3720. DOI: 10.3390/su11133720
  94. 94Zhou, W., Moncaster, A. M., O’Neill, E., Reiner, D., Wang, X., & Guthrie, P. (2022). Estimating past and future annual embodied energy of the urban residential building stock in China, Energy Policy, 165, 112932. DOI: 10.1016/j.enpol.2022.112932
DOI: https://doi.org/10.5334/bc.199 | Journal eISSN: 2632-6655
Language: English
Submitted on: Jan 21, 2022
Accepted on: May 4, 2022
Published on: May 25, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Alice Moncaster, Tove Malmqvist, Tim Forman, Francesco Pomponi, Jane Anderson, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.