Have a personal or library account? Click to login
Residential geothermal airconditioning: inhabitants’ comfort, behaviour and energy use Cover

Residential geothermal airconditioning: inhabitants’ comfort, behaviour and energy use

Open Access
|Apr 2022

References

  1. Andersen, R. V., Toftum, J., Andersen, K. K., & Olesen, B. W. (2009). Survey of occupant behaviour and control of indoor environment in Danish dwellings. Energy and Buildings, 41(1), 1116. DOI: 10.1016/j.enbuild.2008.07.004
  2. ASHRAE. (2013). ASHRAE Standard 55R: Thermal environmental conditions for human occupancy. American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy
  3. Asumadu-Sakyi, A. B., Barnett, A. G., Thai, P., Jayaratne, E. R., Miller, W., Thompson, M. H., Roghani, R., & Morawska, L. (2019). The relationship between indoor and outdoor temperature in warm and cool seasons in houses in Brisbane, Australia. Energy and Buildings, 191, 127142. DOI: 10.1016/j.enbuild.2019.03.010
  4. Australian Building Codes Board. (2021). Summary of changes: Energy efficiency and condensation management. NCC 2022 public comment draft (stage 2). Commonwealth of Australia and States and Territories of Australia 2021, published by the Australian Building Codes Board. https://consultation.abcb.gov.au/engagement/ncc-2022-public-comment-draft-stage-2/supporting_documents/Summary%20of%20changes.pdf
  5. Australian Bureau of Meteorology. (2020). Seasonal climate summary for greater Sydney. Greater Sydney in summer 2019–20: Warm, but wetter than average after a dry start. http://www.bom.gov.au/climate/current/season/nsw/archive/202002.sydney.shtml
  6. Australian Bureau of Statistics. (2020). Household financial resources. www.abs.gov.au/statistics/economy/finance/household-financial-resources/jun-2020
  7. Australian Bureau of Statistics. (2021). A year of COVID-19 and Australians work from home more. https://www.abs.gov.au/media-centre/media-releases/year-covid-19-and-australians-work-home-more
  8. Bae, C., & Chun, C. (2009). Research on seasonal indoor thermal environment and residents’ control behavior of cooling and heating systems in Korea. Building and Environment, 44, 23002307. DOI: 10.1016/j.buildenv.2009.04.003
  9. Bills, R., & Soebarto, V. (2015). Understanding the changing thermal comfort requirements and preferences of older Australians. In 49th International Conference of the Architectural Science Association (2 December 2015–4 December 2015, Melbourne, Australia). https://anzasca.net/wp-content/uploads/2015/12/115_Bills_Soebarto_ASA2015.pdf
  10. Brunsgaard, C., Heiselberg, P., Knudstrup, M. A., & Larsen, T. S. (2011). Evaluation of the indoor environment of comfort houses: Qualitative and quantitative approaches. Indoor Built Environment, 21, 432451. DOI: 10.1177/1420326X11431739
  11. Cao, B., Zhu, Y., Li, M., & Ouyang, Q. (2014). Individual and district heating: A comparison of residential heating modes with an analysis of adaptive thermal comfort. Energy and Buildings, 78, 1724, DOI: 10.1016/j.enbuild.2014.03.063
  12. Cocchi, S., Castellucci, S., & Tucci, A. (2013). Modeling of an air conditioning system with geothermal heat pump for a residential building. Mathematical Problems in Engineering. DOI: 10.1155/2013/781231
  13. Cole, R. J., Robinson, J., Brown, Z., & O’Shea, M. (2008). Re-contextualizing the notion of comfort. Building Research & Information, 36(4), 323336. DOI: 10.1080/09613210802076328
  14. Daniel, L., Baker, E., & Williamson, T. (2019). Cold housing in mild-climate countries: A study of indoor environmental quality and comfort preferences in homes, Adelaide, Australia. Building and Environment, 151, 207218. DOI: 10.1016/j.buildenv.2019.01.037
  15. Daniel, L., Williamson, T., & Soebarto, V. (2017). Comfort-based performance assessment methodology for low energy residential buildings in Australia. Building and Environment, 111, 169179. DOI: 10.1016/j.buildenv.2016.10.023
  16. de Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104(1a), 145167. https://escholarship.org/uc/item/4qq2p9c6
  17. de Dear, R., Kim, J., & Parkinson, T. (2018). Residential adaptive comfort in a humid subtropical climate—Sydney Australia. Energy and Buildings, 158, 12961305. DOI: 10.1016/j.enbuild.2017.11.028
  18. Eon, C., Morrison, G. M., & Byrne, J. (2018). The influence of design and everyday practices on individual heating and cooling behaviour in residential homes. Energy Efficiency, 11(2), 273293. https://link.springer.com/article/10.1007/s12053-017-9563-y. DOI: 10.1007/s12053-017-9563-y
  19. Fanger, P. O. (1970). Thermal comfort: Analysis and applications in environmental engineering. Danish Technical Press.
  20. Ford, B., Schiano-Phan, R., & Vallejo, J. A. (2020). The architecture of natural cooling, 2nd ed. Routledge. DOI: 10.4324/9781315210551-1
  21. Frasers Property Australia. (n.d.). Frasers perspective | Case study on large scale residential geothermal. www.frasersproperty.com.au/Perspective/Residential-In-Focus/geothermal
  22. Frontier Economics. (2020). Residential energy consumption benchmarks. Submitted to the Australian Energy Regulator. https://www.aer.gov.au/system/files/Residential%20energy%20consumption%20benchmarks%20-%209%20December%202020_0.pdf
  23. Green Building Council of Australia. (2014). Green Star communities: Guide for local government. Green Building Council of Australia. https://www.gbca.org.au/uploads/189/2749/Green_Star_Communities_Guide_for_Local_Government_For_Web.pdf
  24. Green Building Council of Australia. (n.d.). Communities: Planning, design and construction. https://new.gbca.org.au/green-star/rating-system/communities/
  25. Hackel, S., & Pertzborn, A. (2011). Effective design and operation of hybrid ground-source heat pumps: Three case studies. Energy and Buildings, 43(12), 34973504. DOI: 10.1016/j.enbuild.2011.09.014
  26. Hansen, A. R., Gram-Hanssen, K., & Knudsen, H. N. (2018). How building design and technologies influence heat-related habits. Building Research & Information, 46(1), 8398. DOI: 10.1080/09613218.2017.1335477
  27. Hawkes, D. (1982). The theoretical basis of comfort in the ‘selective’ control of environments. Energy and Buildings, 5(2), 127134. DOI: 10.1016/0378-7788(82)90008-1
  28. Herring, H. (2006). Energy efficiency—A critical view. Energy, 31(1), 1020. DOI: 10.1016/j.energy.2004.04.055
  29. Humphreys, M. A., & Hancock, M. (2007). Do people like to feel ‘neutral’?: Exploring the variation of the desired thermal sensation on the ASHRAE scale. Energy and Buildings, 39(7), 867874. DOI: 10.1016/j.enbuild.2007.02.014
  30. Khan, H. S., Paolini, R., Santamouris, M., & Caccetta, P. (2020). Exploring the synergies between urban overheating and heatwaves (HWs) in western Sydney. Energies, 13(2), 470. DOI: 10.3390/en13020470
  31. Kim, J., de Dear, R., Parkinson, T., & Candido, C. (2017). Understanding patterns of adaptive comfort behaviour in the Sydney mixed-mode residential context. Energy and Buildings, 141, 274283. DOI: 10.1016/j.enbuild.2017.02.061
  32. Lim, H., Kim, C., Cho, Y., & Kim, M. (2017). Energy saving potentials from the application of heat pipes on geothermal heat pump system. Applied Thermal Engineering, 126, 11911198. DOI: 10.1016/j.applthermaleng.2017.04.086
  33. Manu, S., Shukla, Y., Rawal, R., Thomas, L. E., & de Dear, R. (2016). Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment, 98, 5570. DOI: 10.1016/j.buildenv.2015.12.019
  34. Marschall, M., & Burry, J. (2019). Can the use of stochastic models of occupants’ environmental control behavior influence architectural design outcomes? How field data can influence design outcomes. In Intelligent & Informed, Proceedings of the 24th International Conference of the Association for Computer, Aided Architectural Design Research in Asia (CAADRIA) 2019, Vol. 1, 715724. http://papers.cumincad.org/data/works/att/caadria2019_345.pdf
  35. Moore, T., Berry, S., & Ambrose, M. (2019). Aiming for mediocrity: The case of Australian housing thermal performance. Energy Policy, 132, 602610. DOI: 10.1016/j.enpol.2019.06.017
  36. Moore, T., Ridley, I., Strengers, Y., Maller, C., & Horne, R. (2017). Dwelling performance and adaptive summer comfort in low-income Australian households. Building Research & Information, 45(4), 443456. DOI: 10.1080/09613218.2016.1139906
  37. Morrison, N., & Van den Nouwelant, R. (2020). Western Sydney’s urban transformation: Examining the governance arrangements driving forward the growth vision. Australian Planner, 56(2), 7382. DOI: 10.1080/07293682.2020.1742172
  38. Nationwide House Energy Rating Scheme (NatHERS). (n.d.). What is NatHERS? https://www.nathers.gov.au/
  39. Omer, A. M. (2008). Ground-source heat pumps systems and applications. Renewable and Sustainable Energy Reviews, 12(2), 344371. DOI: 10.1016/j.rser.2006.10.003
  40. Palmer, J., Bennetts, H., Pullen, S., Zuo, J., Ma, T., & Chileshe, N. (2014). The effect of dwelling occupants on energy consumption: the case of heat waves in Australia. Architectural Engineering and Design Management, 10(1–2), 4059. DOI: 10.1080/17452007.2013.837247
  41. Qiu, Y., Kahn, M. E., & Xing, B. (2019). Quantifying the rebound effects of residential solar panel adoption. Journal of Environmental Economics and Management, 96, 310341. DOI: 10.1016/j.jeem.2019.06.003
  42. Rinne, J., Lyytimäki, J., & Kautto, P. (2013). From sustainability to well-being: Lessons learned from the use of sustainable development indicators at national and EU level. Ecological Indicators, 35, 3542. DOI: 10.1016/j.ecolind.2012.09.023
  43. Romanach, L., Hall, N., & Meikle, S. (2017). Energy consumption in an ageing population: exploring energy use and behaviour of low-income older Australians. Energy Procedia, 121, 246253. DOI: 10.1016/j.egypro.2017.08.024
  44. Saman, W., Boland, J., Pullen, S., de Dear, R., Soebarto, V., Miller, W., Pocock, B., et al. (2013). A framework for adaptation of Australian households to heat waves. National Climate Change Adaptation Research Facility, Gold Coast, 242. https://eprints.qut.edu.au/62001/15/A_Framework_for_Adapting_Households_to_Heat_Waves040613.pdf
  45. Saman, W., Pullen, S., & Boland, J. (2015). How to cope with heat waves in the home. In J. P. Palutikof, S. L. Boulter, J. Barnett & D. Rissik (Eds.), Applied studies in climate adaptation (pp. 354363). Wiley-Blackwell. DOI: 10.1002/9781118845028.ch39
  46. Samet, J. M., & Spengler, J. D. (2003). Indoor environments and health: Moving into the 21st century. American Journal of Public Health, 93(9), 14891493. https://ajph.aphapublications.org/doi/pdfplus/10.2105/AJPH.93.9.1489. DOI: 10.2105/AJPH.93.9.1489
  47. Samuel, D. L., Nagendra, S. S., & Maiya, M. P. (2013). Passive alternatives to mechanical air conditioning of building: A review. Building and Environment, 66, 5464. DOI: 10.1016/j.buildenv.2013.04.016
  48. Scott, K. (2012). Measuring wellbeing: Towards sustainability? Routledge. DOI: 10.4324/9780203113622
  49. Sharifi, S., Saman, W., Alemu, A., & Boland, J. (2020). A proposed long-term thermal comfort scale. Building Research & Information, 49(6), 661678. DOI: 10.1080/09613218.2020.1836950
  50. Shove, E. (2018). What is wrong with energy efficiency? Building Research & Information, 46(7), 779789. DOI: 10.1080/09613218.2017.1361746
  51. Solcast. (n.d.). Validation and accuracy: Bias and error validation of Solcast data against surface measurements. https://solcast.com/historical-and-tmy/validation-and-accuracy/
  52. Thomas, L. E. (2017). Combating overheating: Mixed-mode conditioning for workplace comfort. Building Research & Information, 45(1–2), 176194. DOI: 10.1080/09613218.2017.1252617
  53. Thomas, L. E., Wilkinson, S., Wyndham, J., Huete, A., Biloria, N., Woods, A., Kalali, P., et al. (2021). Fairwater Living Laboratory Milestone 3 University of Technology Sydney research report—Highlights: Outcomes for energy, network demand, resident experience, community resilience, urban heat effects and commerciality. ARENA and Climate-KIC Australia. https://climate-kic.org.au/wp-content/uploads/2021/04/Fairwater-Living-Lab-Milestone-3-Report-Summary.pdf
  54. Ürge-Vorsatz, D., Cabeza, L. F., Serrano, S., Barreneche, C., & Petrichenko, K. (2015). Heating and cooling energy trends and drivers in buildings. Renewable Sustainable Energy Review, 41, 8598. DOI: https://www.sciencedirect.com/science/article/pii/S1364032114007151. DOI: 10.1016/j.rser.2014.08.039
  55. Willand, N., Ridley, I., & Pears, A. (2016). Relationship of thermal performance rating, summer indoor temperatures and cooling energy use in 107 homes in Melbourne, Australia. Energy and Buildings, 113, 159168. DOI: 10.1016/j.enbuild.2015.12.032
DOI: https://doi.org/10.5334/bc.172 | Journal eISSN: 2632-6655
Language: English
Submitted on: Sep 18, 2021
|
Accepted on: Mar 15, 2022
|
Published on: Apr 6, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Leena Thomas, Alexandra Woods, Rebecca Powles, Parisa Kalali, Sara Wilkinson, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.