Have a personal or library account? Click to login
Outdoor PM2.5 air filtration: optimising indoor air quality and energy Cover

Outdoor PM2.5 air filtration: optimising indoor air quality and energy

Open Access
|Apr 2022

References

  1. Anderson, J., Granat, M. H., Williams, A. E., & Nester, C. (2019). Exploring occupational standing activities using accelerometer-based activity monitoring. Ergonomics, 62(8), 10551065. DOI: 10.1080/00140139.2019.1615640
  2. ASHRAE. (2017). ANSI/ASHRAE Standard 52.2-2017—Method of testing general ventilation air-cleaning devices for removal efficiency by particle size. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). https://www.ashrae.org/File%20Library/Technical%20Resources/COVID-19/52_2_2017_COVID-19_20200401.pdf
  3. ASHRAE. (2019). ANSI/ASHRAE Standard 62.1-2019—Ventilation for acceptable indoor air quality. CRC Press. DOI: 10.1201/9780849338960.ch6
  4. Azimi, P., Zhao, D., & Stephens, B. (2014). Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin. Atmospheric Environment, 98, 337346. DOI: 10.1016/j.atmosenv.2014.09.007
  5. Ben-David, T., & Waring, M. S. (2016). Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Building and Environment, 104, 320336. DOI: 10.1016/j.buildenv.2016.05.007
  6. Ben-David, T., & Waring, M. S. (2018). Interplay of ventilation and filtration: Differential analysis of cost function combining energy use and indoor exposure to PM 2.5 and ozone. Building and Environment, 128, 320335. DOI: 10.1016/j.buildenv.2017.10.025
  7. Bonato, P., D’Antoni, M., & Fedrizzi, R. (2020). Modelling and simulation-based analysis of a façade-integrated decentralized ventilation unit. Journal of Building Engineering, 29, 101183. DOI: 10.1016/j.jobe.2020.101183
  8. Brakenridge, C. L., Fjeldsoe, B. S., Young, D. C., Winkler, E. A. H., Dunstan, D. W., Straker, L. M., & Healy, G. N. (2016). Evaluating the effectiveness of organisational-level strategies with or without an activity tracker to reduce office workers’ sitting time: A cluster-randomised trial. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 115. DOI: 10.1186/s12966-016-0441-3
  9. Brambilla, A., Candido, C., Sangiorgio, M. F., Gocer, O., & Gocer, K. (2021). Can commercial buildings cope with Australian bushfires? An IAQ analysis. Buildings & Cities, 2(1), 583598. DOI: 10.5334/bc.87
  10. CEN. (2012). BS EN 779: Particulate air filters for general ventilation—Determination of the filtration performance. European Committee for Standardization (CEN). https://shop.bsigroup.com/products/particulate-air-filters-for-general-ventilation-determination-of-the-filtration-performance-1/standard
  11. CEN/TR. (2017). EN 16798-4: Energy performance of buildings—Ventilation for buildings—Part 4: Interpretation of the requirements in EN 16798-3—For non-residential buildings—Performance requirements for ventilation and room-conditioning systems (Modules M5-1, M5-4). European Committee for Standardization (CEN). https://www.en-standard.eu/pd-cen-tr-16798-4-2017-energy-performance-of-buildings-ventilation-for-buildings-interpretation-of-the-requirements-in-en-16798-3-for-non-residential-buildings-performance-requirements-for-ventilation-and-room-conditioning-systems-modules-m5-1-m5-4/
  12. Chen, C., & Zhao, B. (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2), 275288. DOI: 10.1016/j.atmosenv.2010.09.048
  13. Chen, C., Zhao, B., Zhou, W., Jiang, X., & Tan, Z. (2012). A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Building and Environment, 47, 339348. DOI: 10.1016/j.buildenv.2011.07.004
  14. Chen, J., Augenbroe, G., Zeng, Z., & Song, X. (2020). Regional difference and related cooling electricity savings of air pollutant affected natural ventilation in commercial buildings across the US. Building and Environment, 172, 106700. DOI: 10.1016/j.buildenv.2020.106700
  15. Chen, J., Brager, G. S., Augenbroe, G., & Song, X. (2019). Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US. Applied Energy, 235, 673684. DOI: 10.1016/j.apenergy.2018.11.020
  16. Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., & Chen, C. (2016). Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta—General Subjects, 1860(12), 28442855. DOI: 10.1016/j.bbagen.2016.03.019
  17. CIBSE. (2020). CIBSE TM40: Health and wellbeing in building services. Chartered Institution of Building Services Engineers (CIBSE). https://www.cibse.org/Knowledge/CIBSE-TM/TM40-2019-Health-Issues-and-Wellbeing-in-Building-Services
  18. DOE. (2021). Prototype building models. US Department of Energy (DOE). https://www.energycodes.gov/prototype-building-models
  19. Dutheil, F., Baker, J. S., & Navel, V. (2020). COVID-19 as a factor influencing air pollution? Environmental Pollution, 263, 114466. DOI: 10.1016/j.envpol.2020.114466
  20. Dutton, S. M., Banks, D., Brunswick, S. L., & Fisk, W. J. (2013). Health and economic implications of natural ventilation in California offices. Building and Environment, 67, 3445. DOI: 10.1016/j.buildenv.2013.05.002
  21. Economidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225, 110322. DOI: 10.1016/j.enbuild.2020.110322
  22. EN 15265. (2007). EN 15265: Thermal performance of buildings—Calculation of energy needs for space heating and cooling using dynamic methods—General criteria and validation procedures. European Committee for Standardization (CEN). https://standards.iteh.ai/catalog/standards/cen/3b7d56e1-21c8-4f7f-8fe0-eb9a39c80893/en-15265-2007
  23. EN 16798-1. (2019). EN 16798-1: Energy performance of buildings—Ventilation for buildings—Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics—Module M1-6. European Committee for Standardization (CEN). https://standards.iteh.ai/catalog/standards/cen/b4f68755-2204-4796-854a-56643dfcfe89/en-16798-1-2019
  24. EN 16798-3. (2017). EN 16798-3: Energy performance of buildings—Ventilation for buildings—Part 3: For non-residential buildings—Performance requirements for ventilation and room-conditioning systems (Modules M5-1, M5-4). European Committee for Standardization (CEN). https://standards.iteh.ai/catalog/standards/cen/9e321a29-86c6-4226-8331-0c62c69f1924/en-16798-3-2017
  25. EN ISO 16890-1. (2016). EN ISO 16890-1: Air filters for general ventilation—Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM) (ISO 16890-1:2016). European Committee for Standardization (CEN). https://www.iso.org/standard/57864.html
  26. European Commission. (2021). Directive of the European Parliament and of the Council on energy efficiency. European Commission. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en
  27. Eurovent 4/11. (2014). Eurovent 4/11: Energy efficiency classification of air filters for general ventilation purposes (second). Eurovent. https://eurovent.eu/?q=content/eurovent-411-2014-energy-efficiency-classification-air-filters-general-ventilation-purposes
  28. Eurovent 4/21. (2018). Eurovent 4/21: Energy efficiency evaluation of air filters for general ventilation purposes (third). Eurovent. https://eurovent.eu/?q=content/eurovent-421-2018-energy-efficiency-evaluation-air-filters-general-ventilation-purposes
  29. Eurovent 4/23. (2018). Eurovent 4/23: Selection of EN ISO 16890 rated air filter classes for general ventilation applications (second). Eurovent. https://eurovent.eu/sites/default/files/field/file/Eurovent%20REC%204-23%20-%20Selection%20of%20EN%20ISO%2016890%20rated%20air%20filter%20classes%20-%202017.pdf
  30. Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 6774. DOI: 10.1016/j.ecoenv.2016.01.030
  31. Finkelstein, J. M., & Schafer, R. E. (1971). Improved goodness-of-fit tests. Biometrika, 58(3), 641645. DOI: 10.2307/2334400
  32. Flourentzou, F., & Pantet, S. (2015). Theoretical and real ventilation heat losses and energy performance in low energy buildings. In 36th AIVC—5th TightVent—3rd Venticool Conference Proceedings, 10.
  33. Gakidou, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abdulle, A. M., Abera, S. F., Aboyans, V., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., Abyu, G. Y., Adedeji, I. A., Adetokunboh, O., Afarideh, M., Agrawal, A., Agrawal, S., Ahmadieh, H., … Murray, C. J. L. (2017). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390(10100), 13451422. DOI: 10.1016/S0140-6736(17)32366-8
  34. Hall, I. J., Prairie, R., Anderson, H., & Boes, E. (1978). Generation of typical meteorological years for 26 SOLMET stations. Sandia Laboratories. https://books.google.ch/books?id=LfHJnQEACAAJ
  35. Hua, J., Yin, Y., Peng, L., Du, L., Geng, F., & Zhu, L. (2014). Acute effects of black carbon and PM2.5 on children asthma admissions: A time-series study in a Chinese city. Science of The Total Environment, 481, 433438. DOI: 10.1016/j.scitotenv.2014.02.070
  36. Jancey, J., Tye, M., McGann, S., Blackford, K., & Lee, A. H. (2014). Application of the Occupational Sitting and Physical Activity Questionnaire (OSPAQ) to office based workers. BMC Public Health, 14(1), 762. DOI: 10.1186/1471-2458-14-762
  37. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38(18), 28952907. DOI: 10.1016/j.atmosenv.2004.02.026
  38. Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., Koch, E., Krause, G. H. M., Kreyling, W. G., Rauchfuss, K., Rombout, P., Schulz-Klemp, V., Thiel, W. R., & Wichmann, H.-E. (2004). Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health, 207(4), 399407. DOI: 10.1078/1438-4639-00306
  39. Li, A., Ren, T., Yang, C., Lv, W., & Zhang, F. (2017). Study on particle penetration through straight, L, Z and wedge-shaped cracks in buildings. Building and Environment, 114, 333343. DOI: 10.1016/j.buildenv.2016.12.024
  40. Liu, G., Xiao, M., Zhang, X., Gal, C., Chen, X., Liu, L., Pan, S., Wu, J., Tang, L., & Clements-Croome, D. (2017). A review of air filtration technologies for sustainable and healthy building ventilation. Sustainable Cities and Society, 32, 375396. DOI: 10.1016/j.scs.2017.04.011
  41. Liu, J., Han, Y., Tang, X., Zhu, J., & Zhu, T. (2016). Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Science of The Total Environment, 568, 12531262. DOI: 10.1016/j.scitotenv.2016.05.165
  42. Logue, J. M., Price, P. N., Sherman, M. H., & Singer, B. C. (2012). A method to estimate the chronic health impact of air pollutants in U.S. residences. Environmental Health Perspectives, 120(2), 216222. DOI: 10.1289/ehp.1104035
  43. Martins, N. R., & Carrilho da Graça, G. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42, 259275. DOI: 10.1016/j.scs.2018.07.011
  44. Mimura, T., Ichinose, T., Yamagami, S., Fujishima, H., Kamei, Y., Goto, M., Takada, S., & Matsubara, M. (2014). Airborne particulate matter (PM2.5) and the prevalence of allergic conjunctivitis in Japan. Science of The Total Environment, 487, 493499. DOI: 10.1016/j.scitotenv.2014.04.057
  45. Montgomery, J. F., Green, S. I., Rogak, S. N., & Bartlett, K. (2012). Predicting the energy use and operation cost of HVAC air filters. Energy and Buildings, 47, 643650. DOI: 10.1016/j.enbuild.2012.01.001
  46. Nazaroff, W. W. (2018). The particles around us. Indoor Air, 28(2), 215217. DOI: 10.1111/ina.12444
  47. Oh, H.-J., Nam, I.-S., Yun, H., Kim, J., Yang, J., & Sohn, J.-R. (2014). Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Building and Environment, 82, 203214. DOI: 10.1016/j.buildenv.2014.08.019
  48. Qian, J., Peccia, J., & Ferro, A. R. (2014). Walking-induced particle resuspension in indoor environments. Atmospheric Environment, 89, 464481. DOI: 10.1016/j.atmosenv.2014.02.035
  49. Ren, J., Liu, J., Cao, X., & Hou, Y. (2017). Influencing factors and energy-saving control strategies for indoor fine particles in commercial office buildings in six Chinese cities. Energy and Buildings, 149, 171179. DOI: 10.1016/j.enbuild.2017.05.061
  50. Ruan, T., & Rim, D. (2019). Indoor air pollution in office buildings in mega-cities: Effects of filtration efficiency and outdoor air ventilation rates. Sustainable Cities and Society, 49, 101609. DOI: 10.1016/j.scs.2019.101609
  51. Sarigiannis, D. A., Karakitsios, S. P., & Kermenidou, M. V. (2015). Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Science of The Total Environment, 524525, 319–330. DOI: 10.1016/j.scitotenv.2015.02.108
  52. Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., Ren, P., Zhang, L., & Mao, H. (2017). Health burden attributable to ambient PM2.5 in China. Environmental Pollution, 223, 575586. DOI: 10.1016/j.envpol.2017.01.060
  53. Stephens, B., Brennan, Terry, & Harriman, Lew. (2016). Selecting ventilation air filters to reduce PM2.5 of outdoor origin. ASHRAE Journal, 9, 1220.
  54. Stephens, B., Novoselac, A., & Siegel, J. (2010). The effects of filtration on pressure drop and energy consumption in residential HVAC systems (RP-1299). HVAC&R Research, 16(3), 273294. DOI: 10.1080/10789669.2010.10390905
  55. Thatcher, T. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29(13), 14871497. DOI: 10.1016/1352-2310(95)00016-R
  56. Tian, Y., Sul, K., Qian, J., Mondal, S., & Ferro, A. R. (2014). A comparative study of walking-induced dust resuspension using a consistent test mechanism. Indoor Air, 24(6), 592603. DOI: 10.1111/ina.12107
  57. Vadoudi, K., & Kelijian, G. (2019). Status of Air filter energy performance and product characteristics. In 40th AIVC—8th TightVent—6th Venticool Conference Proceedings, 7.
  58. WHO. (2006). Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization (WHO). http://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid=4283873D40CB19EC7B21F91F3ADF27EE?sequence=1
  59. WHO. (2013). Review of evidence on health aspects of air pollution—REVIHAAP project: Final technical report. World Health Organization (WHO). https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report
  60. WHO. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization (WHO). https://apps.who.int/iris/handle/10665/345329
  61. Yu, W., Wang, L., Wang, Q., Wang, X., Li, G., Wang, J., & Awbi, H. (2020). Design selection and evaluation method of PM2.5 filters for fresh air systems. Journal of Building Engineering, 27, 100977. DOI: 10.1016/j.jobe.2019.100977
  62. Zaatari, M., Novoselac, A., & Siegel, J. (2014). The relationship between filter pressure drop, indoor air quality, and energy consumption in rooftop HVAC units. Building and Environment, 73, 151161. DOI: 10.1016/j.buildenv.2013.12.010
  63. Zhao, D., Azimi, P., & Stephens, B. (2015). Evaluating the long-term health and economic impacts of central residential air filtration for reducing premature mortality associated with indoor fine particulate matter (PM2.5) of outdoor origin. International Journal of Environmental Research and Public Health, 12(7), 84488479. DOI: 10.3390/ijerph120708448
  64. Zhao, H., & Stephens, B. (2017). Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences. Indoor Air, 27(1), 218229. DOI: 10.1111/ina.12295
  65. Zimmer, T. (2019). Comfort IAQ—A new tool to simulate the indoor particulate matter pollution in relation to the chosen supply air filter quality. E3S Web of Conferences, 111, 02024. DOI: 10.1051/e3sconf/201911102024
DOI: https://doi.org/10.5334/bc.153 | Journal eISSN: 2632-6655
Language: English
Submitted on: Sep 10, 2021
|
Accepted on: Mar 11, 2022
|
Published on: Apr 6, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Evangelos Belias, Dusan Licina, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.