Have a personal or library account? Click to login
Factors influencing the life-cycle GHG emissions of Brazilian office buildings Cover

Factors influencing the life-cycle GHG emissions of Brazilian office buildings

Open Access
|Oct 2021

References

  1. ABNT. (2006). NBR 12721-2006. Avaliação de custos de construção para incorporação imobiliária e outras disposições para condomínios edilícios. Associação Brasileira de Normas Técnicas (ABNT). https://www.abntcatalogo.com.br/norma.aspx?ID=62882
  2. ABNT. (2008). NBR 16401-3. Instalações de ar-condicionado—Sistemas centrais e unitários. Parte 3: Qualidade do ar interior. Associação Brasileira de Normas Técnicas (ABNT). https://www.abntcatalogo.com.br/norma.aspx?ID=572
  3. ABNT. (2013). NBR 15575-1. Edificações Habitacionais—Desempenho. Parte 1: Requisitos gerais. Associação Brasileira de Normas Técnicas ABNT). https://www.abntcatalogo.com.br/norma.aspx?ID=195568
  4. Airaksinen, M., & Matilainen, P. (2011). A carbon footprint of an office building. Energies, 4(8), 11971210. DOI: 10.3390/en4081197
  5. Alves, T., Machado, L., de Souza, R. G., & de Wilde, P. (2017). A methodology for estimating office building energy use baselines by means of land use legislation and reference buildings. Energy and Buildings, 143, 100113. DOI: 10.1016/j.enbuild.2017.03.017
  6. Alves, T., Machado, L., de Souza, R. G., & de Wilde, P. (2018). Assessing the energy saving potential of an existing high-rise office building stock. Energy and Buildings, 173, 547561. DOI: 10.1016/j.enbuild.2018.05.044
  7. ANVISA. (2003). Resolução-RE Nº 09, de 16 de janeiro de 2003. Agência Nacional de Vigilância Sanitária (ANVISA). https://www.saude.mg.gov.br/index.php?option=com_gmg&controller=document&id=899
  8. Arnold, D. (1996). Mixed-mode HVAC—An alternative philosophy. ASHRAE Transactions: Symposia, article CONF-960254. Winter meeting of the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). https://www.osti.gov/biblio/392497-mixed-mode-hvac-alternative-philosophy
  9. Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 7389. DOI: 10.1016/j.enbuild.2013.04.018
  10. ASHRAE. (2005). 2005 ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE).
  11. Blom, I., Itard, L., & Meijer, A. (2011). Environmental impact of building-related and user-related energy consumption in dwellings. Building and Environment, 46(8), 16571669. DOI: 10.1016/j.buildenv.2011.02.002
  12. Borgstein, E. H., & Lamberts, R. (2014). Developing energy consumption benchmarks for buildings: Bank branches in Brazil. Energy and Buildings, 82, 8291. DOI: 10.1016/j.enbuild.2014.07.028
  13. Bring, J. (1994). How to standardize regression coefficients. American Statistician, 48(3), 209213. DOI: 10.2307/2684719
  14. Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394416. DOI: 10.1016/j.rser.2013.08.037
  15. Carvalho, M. M. Q., La Rovere, E. L., & Gonçalves, A. C. M. (2010). Analysis of variables that influence electric energy consumption in commercial buildings in Brazil. Renewable and Sustainable Energy Reviews, 14(9), 31993205. DOI: 10.1016/j.rser.2010.07.009
  16. CB3E, Eletrobras, PROCEL, & INMETRO. (2015). Catálogo de propriedades térmicas e óticas de vidros comercializados no Brasil. Universidade Federal de Santa Catarina. https://cb3e.ufsc.br/sites/default/files/projetos/etiquetagem/catalogo-propriedades-vidros-comercializados-brasil-13032015_v2.pdf
  17. Chau, C. K., Hui, W. K., Ng, W. Y., & Powell, G. (2012). Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options. Resources, Conservation and Recycling, 61, 2234. DOI: 10.1016/j.resconrec.2012.01.001
  18. Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Applied Energy, 143, 395413. DOI: 10.1016/j.apenergy.2015.01.023
  19. Chen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386396. DOI: 10.1016/j.buildenv.2017.06.026
  20. CIBSE. (2004). Guide F—Energy Efficiency in Buildings. Chartered Institute of Building Services Engineers (CIBSE). https://www.cibse.org/knowledge/knowledge-items/detail?id=a0q3Y00000Hy6hcQAB
  21. Climate.OneBuilding. (2021). Climate.OneBuilding.Org. http://climate.onebuilding.org/
  22. Cole, R. J., & Kernan, P. C. (1996). Life-cycle energy use in office buildings. Building and Environment, 31(4), 307317. DOI: 10.1016/0360-1323(96)00017-0
  23. Condeixa, K., Haddad, A., & Boer, D. (2014). Life cycle impact assessment of masonry system as inner walls: A case study in Brazil. Construction and Building Materials, 70, 141147. DOI: 10.1016/j.conbuildmat.2014.07.113
  24. Condeixa, K., Haddad, A., & Boer, D. (2017). Material flow analysis of the residential building stock at the city of Rio de Janeiro. Journal of Cleaner Production, 149, 12491267. DOI: 10.1016/j.jclepro.2017.02.080
  25. Deetman, S., Marinova, S., van der Voet, E., van Vuuren, D. P., Edelenbosch, O., & Heijungs, R. (2020). Modelling global material stocks and flows for residential and service sector buildings towards 2050. Journal of Cleaner Production, 245, 118658. DOI: 10.1016/j.jclepro.2019.118658
  26. Dimoudi, A., & Tompa, C. (2008). Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 53(1), 8695. DOI: 10.1016/j.resconrec.2008.09.008
  27. Ding, G. K. C. (2007). Life cycle energy assessment of Australian secondary schools. Building Research & Information, 35(5), 487500. DOI: 10.1080/09613210601116408
  28. Eberhardt, L. C. M., Birgisdóttir, H., & Birkved, M. (2019). Life cycle assessment of a Danish office building designed for disassembly. Building Research & Information, 47(6), 666680. DOI: 10.1080/09613218.2018.1517458
  29. EIA. (2012). Commercial Buildings Energy Consumption Survey (CBECS). US Department of Energy, Energy Information Administration (EIA).
  30. European Standards. (2011). EN 15978: Sustainability of construction works—Assessment of environmental performance of buildings—Calculation method (Pub. L. No. EN 15978, 2011). European Standards. https://www.en-standard.eu/din-en-15978-sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method/
  31. Evangelista, P. P. A., Kiperstok, A., Torres, E. A., & Gonçalves, J. P. (2018). Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Construction and Building Materials, 169, 748761. DOI: 10.1016/j.conbuildmat.2018.02.045
  32. Fenner, A. E., Kibert, C. J., Woo, J., Morque, S., Razkenari, M., Hakim, H., & Lu, X. (2018). The carbon footprint of buildings: A review of methodologies and applications. Renewable and Sustainable Energy Reviews, 94, 11421152. DOI: 10.1016/j.rser.2018.07.012
  33. Forsythe, P., & Wilkinson, S. (2015). Measuring office fit-out changes to determine recurring embodied energy in building life cycle assessment. Facilities. DOI: 10.1108/F-08-2013-0065
  34. Frischknecht, R., Birgisdottir, H., Chae, C.-U., Lützkendorf, T., Passer, A., Alsema, E., Balouktsi, M., Berg, B., Dowdell, D., Martínez, A. G., Habert, G., Hollberg, A., König, H., Lasvaux, S., Llatas, C., Rasmussen, F. N., Peuportier, B., Ramseier, L., Röck, M., … Yang, W. (2019). Comparison of the environmental assessment of an identical office building with national methods. IOP Conference Series: Earth and Environmental Science, 323, 012037. DOI: 10.1088/1755-1315/323/1/012037
  35. Frischknecht, R., Ramseier, L., Yang, W., Birgisdottir, H., Chae, C. U., Lützkendorf, T., Passer, A., Balouktsi, M., Berg, B., Bragança, L., Butler, J., Cellura, M., Dixit, M., Dowdell, D., Francart, N., Martínez, A. G., Gomes, V., Silva, M. G. D., Guimaraes, G., … Zara, O. (2020). Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches—IEA EBC Annex 72. IOP Conference Series: Earth and Environmental Science, 588, 022029. DOI: 10.1088/1755-1315/588/2/022029
  36. Gokarakonda, S., van Treeck, C., & Rawal, R. (2019). Influence of building design and control parameters on the potential of mixed-mode buildings in India. Building and Environment, 148, 157172. DOI: 10.1016/j.buildenv.2018.10.043
  37. Gomes, V., Saade, M., Lima, B., & Silva, M. (2018). Exploring lifecycle energy and greenhouse gas emissions of a case study with ambitious energy compensation goals in a cooling-dominated climate. Energy and Buildings, 173, 302314. DOI: 10.1016/j.enbuild.2018.04.063
  38. Häfliger, I.-F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. R. M., & Habert, G. (2017). Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 156, 805816. DOI: 10.1016/j.jclepro.2017.04.052
  39. Heeren, N., & Hellweg, S. (2019). Tracking construction material over space and time: Prospective and geo-referenced modeling of building stocks and construction material flows. Journal of Industrial Ecology, 23(1), 253267. DOI: 10.1111/jiec.12739
  40. Heeren, N., Jakob, M., Martius, G., Gross, N., & Wallbaum, H. (2013). A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 20, 4556. DOI: 10.1016/j.rser.2012.11.064
  41. Heeren, N., Mutel, C. L., Steubing, B., Ostermeyer, Y., Wallbaum, H., & Hellweg, S. (2015). Environmental impact of buildings—What matters? Environmental Science & Technology, 49(16), 98329841. DOI: 10.1021/acs.est.5b01735
  42. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 20302036. DOI: 10.1016/j.renene.2009.02.016
  43. Hoxha, E., Habert, G., Chevalier, J., Bazzana, M., & Le Roy, R. (2014). Method to analyse the contribution of material’s sensitivity in buildings’ environmental impact. Journal of Cleaner Production, 66, 5464. DOI: 10.1016/j.jclepro.2013.10.056
  44. Hygh, J. S., DeCarolis, J. F., Hill, D. B., & Ranji Ranjithan, S. (2012). Multivariate regression as an energy assessment tool in early building design. Building and Environment, 57, 165175. DOI: 10.1016/j.buildenv.2012.04.021
  45. IBGE. (2019). PNAD Contínua—2018 Características adicionais do mercado de trabalho. Instituto Brasileiro de Geografia e Estatística (IBGE). https://www.ibge.gov.br/estatisticas/multidominio/condicoes-de-vida-desigualdade-e-pobreza/17270-pnad-continua.html?edicao=26413&t=sobre
  46. IEA. (2017). Energy technology perspectives 2017: Catalysing energy technology transformations. International Energy Agency (IEA).
  47. IEA. (2018). The future of cooling. International Energy Agency (IEA). https://www.iea.org/reports/the-future-of-cooling
  48. Inmetro. (2017). Tabelas de consumo/eficiência energética. http://www.inmetro.gov.br/consumidor/pbe/condicionadores.asp
  49. IPCC. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (Eds.) T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley. Cambridge University Press. https://www.ipcc.ch/report/ar5/wg1/
  50. ISO. (2006). ISO 14040:2006: Environmental management—Life cycle assessment—Principles and framework (Pub. L. No. ISO 14040). https://www.en-standard.eu/iso-14040-environmental-management-life-cycle-assessment-principles-and-framework/
  51. Junnila, S., Horvath, A., & Guggemos, A. A. (2006). Life-cycle assessment of office buildings in Europe and the United States. Journal of Infrastructure Systems, 12(1), 1017. DOI: 10.1061/(ASCE)1076-0342(2006)12:1(10)
  52. Karimpour, M., Belusko, M., Xing, K., & Bruno, F. (2014). Minimising the life cycle energy of buildings: Review and analysis. Building and Environment, 73, 106114. DOI: 10.1016/j.buildenv.2013.11.019
  53. Knauf A/S. (2016). Environmental product declaration: Knauf Danoline Cleaneo Markant, Contur, Linear and Danopanel (perforated). The Norwegian EPD Foundation. https://www.epd-norge.no/bygningsplater-romdelingssystemer/knauf-danoline-cleaneo-markant-contur-linear-and-danopanel-perforated-article1279-318.html
  54. Kofoworola, O. F., & Gheewala, S. H. (2008). Environmental life cycle assessment of a commercial office building in Thailand. International Journal of Life Cycle Assessment, 13(6), 498. DOI: 10.1007/s11367-008-0012-1
  55. Kofoworola, O. F., & Gheewala, S. H. (2009). Life cycle energy assessment of a typical office building in Thailand. Energy and Buildings, 41(10), 10761083. DOI: 10.1016/j.enbuild.2009.06.002
  56. Kumanayake, R., Luo, H., & Paulusz, N. (2018). Assessment of material related embodied carbon of an office building in Sri Lanka. Energy and Buildings, 166, 250257. DOI: 10.1016/j.enbuild.2018.01.065
  57. Kylili, A., Ilic, M., & Fokaides, P. A. (2017). Whole-building life cycle assessment (LCA) of a passive house of the sub-tropical climatic zone. Resources, Conservation and Recycling, 116, 169177. DOI: 10.1016/j.resconrec.2016.10.010
  58. Lam, J. C., & Hui, S. C. M. (1996a). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 2739. DOI: 10.1016/0360-1323(95)00031-3
  59. Lam, J. C., & Hui, S. C. M. (1996b). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 2739. DOI: 10.1016/0360-1323(95)00031-3
  60. Lamberts, R., Borgstein, E., Cursino, A., Schinazi, A., & De Dominicis, A. (2015). Benchmarking de escritórios corporativos e recomendações para certificação DEO no Brasil. Conselho Brasileiro de Construção Sustentável (CBCS). http://www.construcaospsustentavel.com.br/biblioteca/Madeira/deo_-_desempenho_energetico_operacional_em_edificacoes
  61. Lessard, Y., Anand, C., Blanchet, P., Frenette, C., & Amor, B. (2018). LEED v4: Where are we now? Critical assessment through the LCA of an office building using a low impact energy consumption mix. Journal of Industrial Ecology, 22(5), 11051116. DOI: 10.1111/jiec.12647
  62. McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239245. DOI: 10.1080/00401706.2000.10485979
  63. Meneghelli, A. (2018). Whole-building embodied carbon of a North American LEED-certified library: Sensitivity analysis of the environmental impact of buildings materials. Building and Environment, 134, 230241. DOI: 10.1016/j.buildenv.2018.02.044
  64. Ministry of Mines and Energy. (2019). BEN—Séries Históricas Completas 1970–2018. http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/BEN-Series-Historicas-Completas
  65. Morales, M., Moraga, G., Kirchheim, A. P., & Passuello, A. (2019). Regionalized inventory data in LCA of public housing: A comparison between two conventional typologies in southern Brazil. Journal of Cleaner Production, 238, 117869. DOI: 10.1016/j.jclepro.2019.117869
  66. Morales, M., Reguly, N., Kirchheim, A. P., & Passuello, A. (2020). Uncertainties related to the replacement stage in LCA of buildings: A case study of a structural masonry clay hollow brick wall. Journal of Cleaner Production, 251, 119649. DOI: 10.1016/j.jclepro.2019.119649
  67. Morishita, C., Sorgato, M. J., Versage, R., Triana, M. A., Marinoski, D. L., & Lamberts, R. (2011). Catálogo de propriedades térmicas de paredes e coberturas. Laboratório de Eficiência Energética em Edificações (LABEEE). https://www.academia.edu/14978441/Cat%C3%A1logo_de_propriedades_t%C3%A9rmicas_de_paredes_e_coberturas
  68. Najjar, M. K., Figueiredo, K., Evangelista, A. C. J., Hammad, A. W. A., Tam, V. W. Y., & Haddad, A. (2019). Life cycle assessment methodology integrated with BIM as a decision-making tool at early-stages of building design. International Journal of Construction Management. DOI: 10.1080/15623599.2019.1637098
  69. Neves, L. O., Melo, A. P., & Rodrigues, L. L. (2019). Energy performance of mixed-mode office buildings: Assessing typical construction design practices. Journal of Cleaner Production, 234, 451466. DOI: 10.1016/j.jclepro.2019.06.216
  70. Obrecht, T. P., Jordan, S., Legat, A., & Passer, A. (2021). The role of electricity mix and production efficiency improvements on greenhouse gas (GHG) emissions of building components and future refurbishment measures. International Journal of Life Cycle Assessment, 26(5), 839851. DOI: 10.1007/s11367-021-01920-2
  71. Opher, T., Duhamel, M., Posen, I. D., Panesar, D. K., Brugmann, R., Roy, A., Zizzo, R., Sequeira, L., Anvari, A., & MacLean, H. L. (2021). Life cycle GHG assessment of a building restoration: Case study of a heritage industrial building in Toronto, Canada. Journal of Cleaner Production, 279, 123819. DOI: 10.1016/j.jclepro.2020.123819
  72. Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon footprint: Current methods of estimation. Environmental Monitoring and Assessment, 178(1–4), 135160. DOI: 10.1007/s10661-010-1678-y
  73. Pannier, M.-L., Schalbart, P., & Peuportier, B. (2018). Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment. Journal of Cleaner Production, 199, 466480. DOI: 10.1016/j.jclepro.2018.07.070
  74. Paulsen, J. S., & Sposto, R. M. (2013). A life cycle energy analysis of social housing in Brazil: Case study for the program ‘MY HOUSE MY LIFE’. Energy and Buildings, 57, 95102. DOI: 10.1016/j.enbuild.2012.11.014
  75. Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394398. DOI: 10.1016/j.enbuild.2007.03.007
  76. PINI. (2010). TCPO: Tabelas de Composições de Preços para Orçamentos (13th ed.). PINI.
  77. Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 15921600. DOI: 10.1016/j.enbuild.2010.05.007
  78. Rauf, A., & Crawford, R. H. (2015). Building service life and its effect on the life cycle embodied energy of buildings. Energy, 79, 140148. DOI: 10.1016/j.energy.2014.10.093
  79. Roriz, M. (2012). Arquivos Climáticos de Municípios Brasileiros. Associação Nacional de Tecnologia do Ambiente Construído. https://labeee.ufsc.br/downloads/arquivos-climaticos/formato-epw
  80. Rossi, B., Marique, A.-F., & Reiter, S. (2012). Life-cycle assessment of residential buildings in three different European locations, case study. Building and Environment, 51, 402407. DOI: 10.1016/j.buildenv.2011.11.002
  81. Ruuska, A. P., & Häkkinen, T. M. (2015). The significance of various factors for GHG emissions of buildings. International Journal of Sustainable Engineering, 8(4–5), 317330. DOI: 10.1080/19397038.2014.934931
  82. Salcido, J. C., Raheem, A. A., & Issa, R. R. A. (2016). From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy and Buildings, 127, 10081018. DOI: 10.1016/j.enbuild.2016.06.054
  83. Saltelli, A. (Ed.). (2008). Global sensitivity analysis: The primer. Wiley. DOI: 10.1002/9780470725184
  84. Santesso, C. A. (2018). ParIDF: Python open source code developed to perform parametric simulations through EnergyPlus Building Energy Simulation (BES) software (Source code). Universidade de São Paulo. https://www.iau.usp.br/laboratorios/lca/index.php/trabalhos-conforto/
  85. Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249257. DOI: 10.1016/j.enbuild.2006.07.001
  86. Seo, S., & Hwang, Y. (2001). Estimation of CO2 emissions in life cycle of residential buildings. Journal of Construction Engineering and Management, 127(5), 414418. DOI: 10.1061/(ASCE)0733-9364(2001)127:5(414)
  87. Sinduscon-MG. (2007). Custo unitário básico (CUB/m2): Principais aspectos. Sinduscon-MG. http://www.cub.org.br/cartilha-cub-m2
  88. Sinha, R., Lennartsson, M., & Frostell, B. (2016). Environmental footprint assessment of building structures: A comparative study. Building and Environment, 104, 162171. DOI: 10.1016/j.buildenv.2016.05.012
  89. Suzuki, M., & Oka, T. (1998). Estimation of life cycle energy consumption and CO2 emission of office buildings in Japan. Energy and Buildings, 28(1), 3341. DOI: 10.1016/S0378-7788(98)00010-3
  90. Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 18191835. DOI: 10.1016/j.rser.2008.09.033
  91. Taborianski, V. M., & Prado, R. T. A. (2012). Methodology of CO2 emission evaluation in the life cycle of office building façades. Environmental Impact Assessment Review, 33(1), 4147. DOI: 10.1016/j.eiar.2011.10.004
  92. Tian, W., Heo, Y., de Wilde, P., Li, Z., Yan, D., Park, C. S., Feng, X., & Augenbroe, G. (2018). A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews, 93, 285301. DOI: 10.1016/j.rser.2018.05.029
  93. UN. (2021). GVA by kind of economic activity. National accounts. UNData. http://data.un.org/
  94. US Department of Energy. (2019). EnergyPlus version 9.2.0 documentation. Engineering reference. US Department of Energy. https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/
  95. Versage, R., Borgstein, E., & Lamberts, R. (n.d.). Grau-horas de resfriamento GHR. Conselho Brasileiro de Construção Sustentável (CBCS). http://cbcs2.hospedagemdesites.ws/_5dotSystem/userFiles/CTEnergia-benchmark/CBCS_GHRs_v1%20(1).pdf
  96. Wallhagen, M., Glaumann, M., & Malmqvist, T. (2011). Basic building life cycle calculations to decrease contribution to climate change—Case study on an office building in Sweden. Building and Environment, 46(10), 18631871. DOI: 10.1016/j.buildenv.2011.02.003
  97. Wang, J., Yu, C., & Pan, W. (2018). Life cycle energy of high-rise office buildings in Hong Kong. Energy and Buildings, 167, 152164. DOI: 10.1016/j.enbuild.2018.02.038
  98. Ward, J. K., Wall, J., & Perfumo, C. (2012). Environmentally active buildings: The controls challenge. Architectural Science Review, 55(1), 2634. DOI: 10.1080/00038628.2011.641735
  99. Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C. O., & Wernet, G. (2013). Overview and methodology. Data quality guideline for the ecoinvent database version 3 (Ecoinvent Report No. 1 (v3)). The ecoinvent Centre. https://lca-net.com/publications/show/overview-methodology-data-quality-guideline-ecoinvent-database-version-3/
  100. Wiik, M. K., Fufa, S. M., Kristjansdottir, T., & Andresen, I. (2018). Lessons learnt from embodied GHG emission calculations in zero emission buildings (ZEBs) from the Norwegian ZEB research centre. Energy and Buildings, 165, 2534. DOI: 10.1016/j.enbuild.2018.01.025
  101. Williams, D., Elghali, L., Wheeler, R., & France, C. (2012). Climate change influence on building lifecycle greenhouse gas emissions: Case study of a UK mixed-use development. Energy and Buildings, 48, 112126. DOI: 10.1016/j.enbuild.2012.01.016
  102. Wong, I. L., Krüger, E., Loper, A. C. M., & Mori, F. K. (2019). Classification and energy analysis of bank building stock: A case study in Curitiba, Brazil. Journal of Building Engineering, 23, 259269. DOI: 10.1016/j.jobe.2019.02.003
  103. Yan, H., Shen, Q., Fan, L. C. H., Wang, Y., & Zhang, L. (2010). Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Building and Environment, 45(4), 949955. DOI: 10.1016/j.buildenv.2009.09.014
  104. Ylmén, P., Peñaloza, D., & Mjörnell, K. (2019). Life cycle assessment of an office building based on site-specific data. Energies, 12(13), 2588. DOI: 10.3390/en12132588
  105. Yohanis, Y. G., & Norton, B. (2002). Life-cycle operational and embodied energy for a generic single-storey office building in the UK. Energy, 27(1), 7792. DOI: 10.1016/S0360-5442(01)00061-5
  106. Zhang, X., Zheng, R., & Wang, F. (2019). Uncertainty in the life cycle assessment of building emissions: A comparative case study of stochastic approaches. Building and Environment, 147, 121131. DOI: 10.1016/j.buildenv.2018.10.016
DOI: https://doi.org/10.5334/bc.136 | Journal eISSN: 2632-6655
Language: English
Submitted on: Jun 4, 2021
|
Accepted on: Sep 24, 2021
|
Published on: Oct 19, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Kamila Krych, Niko Heeren, Edgar G. Hertwich, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.