References
- ABNT. (2006). NBR 12721-2006. Avaliação de custos de construção para incorporação imobiliária e outras disposições para condomínios edilícios. Associação Brasileira de Normas Técnicas (ABNT).
https://www.abntcatalogo.com.br/norma.aspx?ID=62882 - ABNT. (2008). NBR 16401-3. Instalações de ar-condicionado—Sistemas centrais e unitários. Parte 3: Qualidade do ar interior. Associação Brasileira de Normas Técnicas (ABNT).
https://www.abntcatalogo.com.br/norma.aspx?ID=572 - ABNT. (2013). NBR 15575-1. Edificações Habitacionais—Desempenho. Parte 1: Requisitos gerais. Associação Brasileira de Normas Técnicas ABNT).
https://www.abntcatalogo.com.br/norma.aspx?ID=195568 - Airaksinen, M., & Matilainen, P. (2011). A carbon footprint of an office building. Energies, 4(8), 1197–1210. DOI: 10.3390/en4081197
- Alves, T., Machado, L., de Souza, R. G., & de Wilde, P. (2017). A methodology for estimating office building energy use baselines by means of land use legislation and reference buildings. Energy and Buildings, 143, 100–113. DOI: 10.1016/j.enbuild.2017.03.017
- Alves, T., Machado, L., de Souza, R. G., & de Wilde, P. (2018). Assessing the energy saving potential of an existing high-rise office building stock. Energy and Buildings, 173, 547–561. DOI: 10.1016/j.enbuild.2018.05.044
- ANVISA. (2003). Resolução-RE Nº 09, de 16 de janeiro de 2003. Agência Nacional de Vigilância Sanitária (ANVISA).
https://www.saude.mg.gov.br/index.php?option=com_gmg&controller=document&id=899 - Arnold, D. (1996). Mixed-mode HVAC—An alternative philosophy. ASHRAE Transactions: Symposia, article CONF-960254. Winter meeting of the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE).
https://www.osti.gov/biblio/392497-mixed-mode-hvac-alternative-philosophy - Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 73–89. DOI: 10.1016/j.enbuild.2013.04.018
- ASHRAE. (2005). 2005 ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE).
- Blom, I., Itard, L., & Meijer, A. (2011). Environmental impact of building-related and user-related energy consumption in dwellings. Building and Environment, 46(8), 1657–1669. DOI: 10.1016/j.buildenv.2011.02.002
- Borgstein, E. H., & Lamberts, R. (2014). Developing energy consumption benchmarks for buildings: Bank branches in Brazil. Energy and Buildings, 82, 82–91. DOI: 10.1016/j.enbuild.2014.07.028
- Bring, J. (1994). How to standardize regression coefficients. American Statistician, 48(3), 209–213. DOI: 10.2307/2684719
- Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. DOI: 10.1016/j.rser.2013.08.037
- Carvalho, M. M. Q., La Rovere, E. L., & Gonçalves, A. C. M. (2010). Analysis of variables that influence electric energy consumption in commercial buildings in Brazil. Renewable and Sustainable Energy Reviews, 14(9), 3199–3205. DOI: 10.1016/j.rser.2010.07.009
- CB3E, Eletrobras, PROCEL, & INMETRO. (2015). Catálogo de propriedades térmicas e óticas de vidros comercializados no Brasil. Universidade Federal de Santa Catarina.
https://cb3e.ufsc.br/sites/default/files/projetos/etiquetagem/catalogo-propriedades-vidros-comercializados-brasil-13032015_v2.pdf - Chau, C. K., Hui, W. K., Ng, W. Y., & Powell, G. (2012). Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options. Resources, Conservation and Recycling, 61, 22–34. DOI: 10.1016/j.resconrec.2012.01.001
- Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Applied Energy, 143, 395–413. DOI: 10.1016/j.apenergy.2015.01.023
- Chen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386–396. DOI: 10.1016/j.buildenv.2017.06.026
- CIBSE. (2004). Guide F—Energy Efficiency in Buildings. Chartered Institute of Building Services Engineers (CIBSE).
https://www.cibse.org/knowledge/knowledge-items/detail?id=a0q3Y00000Hy6hcQAB - Climate.OneBuilding. (2021). Climate.OneBuilding.Org.
http://climate.onebuilding.org/ - Cole, R. J., & Kernan, P. C. (1996). Life-cycle energy use in office buildings. Building and Environment, 31(4), 307–317. DOI: 10.1016/0360-1323(96)00017-0
- Condeixa, K., Haddad, A., & Boer, D. (2014). Life cycle impact assessment of masonry system as inner walls: A case study in Brazil. Construction and Building Materials, 70, 141–147. DOI: 10.1016/j.conbuildmat.2014.07.113
- Condeixa, K., Haddad, A., & Boer, D. (2017). Material flow analysis of the residential building stock at the city of Rio de Janeiro. Journal of Cleaner Production, 149, 1249–1267. DOI: 10.1016/j.jclepro.2017.02.080
- Deetman, S., Marinova, S., van der Voet, E., van Vuuren, D. P., Edelenbosch, O., & Heijungs, R. (2020). Modelling global material stocks and flows for residential and service sector buildings towards 2050. Journal of Cleaner Production, 245, 118658. DOI: 10.1016/j.jclepro.2019.118658
- Dimoudi, A., & Tompa, C. (2008). Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 53(1), 86–95. DOI: 10.1016/j.resconrec.2008.09.008
- Ding, G. K. C. (2007). Life cycle energy assessment of Australian secondary schools. Building Research & Information, 35(5), 487–500. DOI: 10.1080/09613210601116408
- Eberhardt, L. C. M., Birgisdóttir, H., & Birkved, M. (2019). Life cycle assessment of a Danish office building designed for disassembly. Building Research & Information, 47(6), 666–680. DOI: 10.1080/09613218.2018.1517458
- EIA. (2012). Commercial Buildings Energy Consumption Survey (CBECS). US Department of Energy, Energy Information Administration (EIA).
- European Standards. (2011). EN 15978: Sustainability of construction works—Assessment of environmental performance of buildings—Calculation method (Pub. L. No. EN 15978, 2011). European Standards.
https://www.en-standard.eu/din-en-15978-sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method/ - Evangelista, P. P. A., Kiperstok, A., Torres, E. A., & Gonçalves, J. P. (2018). Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Construction and Building Materials, 169, 748–761. DOI: 10.1016/j.conbuildmat.2018.02.045
- Fenner, A. E., Kibert, C. J., Woo, J., Morque, S., Razkenari, M., Hakim, H., & Lu, X. (2018). The carbon footprint of buildings: A review of methodologies and applications. Renewable and Sustainable Energy Reviews, 94, 1142–1152. DOI: 10.1016/j.rser.2018.07.012
- Forsythe, P., & Wilkinson, S. (2015). Measuring office fit-out changes to determine recurring embodied energy in building life cycle assessment. Facilities. DOI: 10.1108/F-08-2013-0065
- Frischknecht, R., Birgisdottir, H., Chae, C.-U., Lützkendorf, T., Passer, A., Alsema, E., Balouktsi, M., Berg, B., Dowdell, D., Martínez, A. G., Habert, G., Hollberg, A., König, H., Lasvaux, S., Llatas, C., Rasmussen, F. N., Peuportier, B., Ramseier, L., Röck, M., … Yang, W. (2019). Comparison of the environmental assessment of an identical office building with national methods. IOP Conference Series: Earth and Environmental Science, 323, 012037. DOI: 10.1088/1755-1315/323/1/012037
- Frischknecht, R., Ramseier, L., Yang, W., Birgisdottir, H., Chae, C. U., Lützkendorf, T., Passer, A., Balouktsi, M., Berg, B., Bragança, L., Butler, J., Cellura, M., Dixit, M., Dowdell, D., Francart, N., Martínez, A. G., Gomes, V., Silva, M. G. D., Guimaraes, G., … Zara, O. (2020). Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches—IEA EBC Annex 72. IOP Conference Series: Earth and Environmental Science, 588, 022029. DOI: 10.1088/1755-1315/588/2/022029
- Gokarakonda, S., van Treeck, C., & Rawal, R. (2019). Influence of building design and control parameters on the potential of mixed-mode buildings in India. Building and Environment, 148, 157–172. DOI: 10.1016/j.buildenv.2018.10.043
- Gomes, V., Saade, M., Lima, B., & Silva, M. (2018). Exploring lifecycle energy and greenhouse gas emissions of a case study with ambitious energy compensation goals in a cooling-dominated climate. Energy and Buildings, 173, 302–314. DOI: 10.1016/j.enbuild.2018.04.063
- Häfliger, I.-F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. R. M., & Habert, G. (2017). Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 156, 805–816. DOI: 10.1016/j.jclepro.2017.04.052
- Heeren, N., & Hellweg, S. (2019). Tracking construction material over space and time: Prospective and geo-referenced modeling of building stocks and construction material flows. Journal of Industrial Ecology, 23(1), 253–267. DOI: 10.1111/jiec.12739
- Heeren, N., Jakob, M., Martius, G., Gross, N., & Wallbaum, H. (2013). A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and Sustainable Energy Reviews, 20, 45–56. DOI: 10.1016/j.rser.2012.11.064
- Heeren, N., Mutel, C. L., Steubing, B., Ostermeyer, Y., Wallbaum, H., & Hellweg, S. (2015). Environmental impact of buildings—What matters? Environmental Science & Technology, 49(16), 9832–9841. DOI: 10.1021/acs.est.5b01735
- Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030–2036. DOI: 10.1016/j.renene.2009.02.016
- Hoxha, E., Habert, G., Chevalier, J., Bazzana, M., & Le Roy, R. (2014). Method to analyse the contribution of material’s sensitivity in buildings’ environmental impact. Journal of Cleaner Production, 66, 54–64. DOI: 10.1016/j.jclepro.2013.10.056
- Hygh, J. S., DeCarolis, J. F., Hill, D. B., & Ranji Ranjithan, S. (2012). Multivariate regression as an energy assessment tool in early building design. Building and Environment, 57, 165–175. DOI: 10.1016/j.buildenv.2012.04.021
- IBGE. (2019). PNAD Contínua—2018 Características adicionais do mercado de trabalho. Instituto Brasileiro de Geografia e Estatística (IBGE).
https://www.ibge.gov.br/estatisticas/multidominio/condicoes-de-vida-desigualdade-e-pobreza/17270-pnad-continua.html?edicao=26413&t=sobre - IEA. (2017). Energy technology perspectives 2017: Catalysing energy technology transformations. International Energy Agency (IEA).
- IEA. (2018). The future of cooling. International Energy Agency (IEA).
https://www.iea.org/reports/the-future-of-cooling - Inmetro. (2017). Tabelas de consumo/eficiência energética.
http://www.inmetro.gov.br/consumidor/pbe/condicionadores.asp - IPCC. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (Eds.) T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley. Cambridge University Press.
https://www.ipcc.ch/report/ar5/wg1/ - ISO. (2006). ISO 14040:2006: Environmental management—Life cycle assessment—Principles and framework (Pub. L. No. ISO 14040).
https://www.en-standard.eu/iso-14040-environmental-management-life-cycle-assessment-principles-and-framework/ - Junnila, S., Horvath, A., & Guggemos, A. A. (2006). Life-cycle assessment of office buildings in Europe and the United States. Journal of Infrastructure Systems, 12(1), 10–17. DOI: 10.1061/(ASCE)1076-0342(2006)12:1(10)
- Karimpour, M., Belusko, M., Xing, K., & Bruno, F. (2014). Minimising the life cycle energy of buildings: Review and analysis. Building and Environment, 73, 106–114. DOI: 10.1016/j.buildenv.2013.11.019
- Knauf A/S. (2016). Environmental product declaration: Knauf Danoline Cleaneo Markant, Contur, Linear and Danopanel (perforated). The Norwegian EPD Foundation.
https://www.epd-norge.no/bygningsplater-romdelingssystemer/knauf-danoline-cleaneo-markant-contur-linear-and-danopanel-perforated-article1279-318.html - Kofoworola, O. F., & Gheewala, S. H. (2008). Environmental life cycle assessment of a commercial office building in Thailand. International Journal of Life Cycle Assessment, 13(6), 498. DOI: 10.1007/s11367-008-0012-1
- Kofoworola, O. F., & Gheewala, S. H. (2009). Life cycle energy assessment of a typical office building in Thailand. Energy and Buildings, 41(10), 1076–1083. DOI: 10.1016/j.enbuild.2009.06.002
- Kumanayake, R., Luo, H., & Paulusz, N. (2018). Assessment of material related embodied carbon of an office building in Sri Lanka. Energy and Buildings, 166, 250–257. DOI: 10.1016/j.enbuild.2018.01.065
- Kylili, A., Ilic, M., & Fokaides, P. A. (2017). Whole-building life cycle assessment (LCA) of a passive house of the sub-tropical climatic zone. Resources, Conservation and Recycling, 116, 169–177. DOI: 10.1016/j.resconrec.2016.10.010
- Lam, J. C., & Hui, S. C. M. (1996a). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 27–39. DOI: 10.1016/0360-1323(95)00031-3
- Lam, J. C., & Hui, S. C. M. (1996b). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 27–39. DOI: 10.1016/0360-1323(95)00031-3
- Lamberts, R., Borgstein, E., Cursino, A., Schinazi, A., & De Dominicis, A. (2015). Benchmarking de escritórios corporativos e recomendações para certificação DEO no Brasil. Conselho Brasileiro de Construção Sustentável (CBCS).
http://www.construcaospsustentavel.com.br/biblioteca/Madeira/deo_-_desempenho_energetico_operacional_em_edificacoes - Lessard, Y., Anand, C., Blanchet, P., Frenette, C., & Amor, B. (2018). LEED v4: Where are we now? Critical assessment through the LCA of an office building using a low impact energy consumption mix. Journal of Industrial Ecology, 22(5), 1105–1116. DOI: 10.1111/jiec.12647
- McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245. DOI: 10.1080/00401706.2000.10485979
- Meneghelli, A. (2018). Whole-building embodied carbon of a North American LEED-certified library: Sensitivity analysis of the environmental impact of buildings materials. Building and Environment, 134, 230–241. DOI: 10.1016/j.buildenv.2018.02.044
- Ministry of Mines and Energy. (2019). BEN—Séries Históricas Completas 1970–2018.
http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/BEN-Series-Historicas-Completas - Morales, M., Moraga, G., Kirchheim, A. P., & Passuello, A. (2019). Regionalized inventory data in LCA of public housing: A comparison between two conventional typologies in southern Brazil. Journal of Cleaner Production, 238, 117869. DOI: 10.1016/j.jclepro.2019.117869
- Morales, M., Reguly, N., Kirchheim, A. P., & Passuello, A. (2020). Uncertainties related to the replacement stage in LCA of buildings: A case study of a structural masonry clay hollow brick wall. Journal of Cleaner Production, 251, 119649. DOI: 10.1016/j.jclepro.2019.119649
- Morishita, C., Sorgato, M. J., Versage, R., Triana, M. A., Marinoski, D. L., & Lamberts, R. (2011). Catálogo de propriedades térmicas de paredes e coberturas. Laboratório de Eficiência Energética em Edificações (LABEEE).
https://www.academia.edu/14978441/Cat%C3%A1logo_de_propriedades_t%C3%A9rmicas_de_paredes_e_coberturas - Najjar, M. K., Figueiredo, K., Evangelista, A. C. J., Hammad, A. W. A., Tam, V. W. Y., & Haddad, A. (2019). Life cycle assessment methodology integrated with BIM as a decision-making tool at early-stages of building design. International Journal of Construction Management. DOI: 10.1080/15623599.2019.1637098
- Neves, L. O., Melo, A. P., & Rodrigues, L. L. (2019). Energy performance of mixed-mode office buildings: Assessing typical construction design practices. Journal of Cleaner Production, 234, 451–466. DOI: 10.1016/j.jclepro.2019.06.216
- Obrecht, T. P., Jordan, S., Legat, A., & Passer, A. (2021). The role of electricity mix and production efficiency improvements on greenhouse gas (GHG) emissions of building components and future refurbishment measures. International Journal of Life Cycle Assessment, 26(5), 839–851. DOI: 10.1007/s11367-021-01920-2
- Opher, T., Duhamel, M., Posen, I. D., Panesar, D. K., Brugmann, R., Roy, A., Zizzo, R., Sequeira, L., Anvari, A., & MacLean, H. L. (2021). Life cycle GHG assessment of a building restoration: Case study of a heritage industrial building in Toronto, Canada. Journal of Cleaner Production, 279, 123819. DOI: 10.1016/j.jclepro.2020.123819
- Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon footprint: Current methods of estimation. Environmental Monitoring and Assessment, 178(1–4), 135–160. DOI: 10.1007/s10661-010-1678-y
- Pannier, M.-L., Schalbart, P., & Peuportier, B. (2018). Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment. Journal of Cleaner Production, 199, 466–480. DOI: 10.1016/j.jclepro.2018.07.070
- Paulsen, J. S., & Sposto, R. M. (2013). A life cycle energy analysis of social housing in Brazil: Case study for the program ‘MY HOUSE MY LIFE’. Energy and Buildings, 57, 95–102. DOI: 10.1016/j.enbuild.2012.11.014
- Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394–398. DOI: 10.1016/j.enbuild.2007.03.007
- PINI. (2010). TCPO: Tabelas de Composições de Preços para Orçamentos (13th ed.). PINI.
- Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. DOI: 10.1016/j.enbuild.2010.05.007
- Rauf, A., & Crawford, R. H. (2015). Building service life and its effect on the life cycle embodied energy of buildings. Energy, 79, 140–148. DOI: 10.1016/j.energy.2014.10.093
- Roriz, M. (2012). Arquivos Climáticos de Municípios Brasileiros. Associação Nacional de Tecnologia do Ambiente Construído.
https://labeee.ufsc.br/downloads/arquivos-climaticos/formato-epw - Rossi, B., Marique, A.-F., & Reiter, S. (2012). Life-cycle assessment of residential buildings in three different European locations, case study. Building and Environment, 51, 402–407. DOI: 10.1016/j.buildenv.2011.11.002
- Ruuska, A. P., & Häkkinen, T. M. (2015). The significance of various factors for GHG emissions of buildings. International Journal of Sustainable Engineering, 8(4–5), 317–330. DOI: 10.1080/19397038.2014.934931
- Salcido, J. C., Raheem, A. A., & Issa, R. R. A. (2016). From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy and Buildings, 127, 1008–1018. DOI: 10.1016/j.enbuild.2016.06.054
- Saltelli, A. (Ed.). (2008). Global sensitivity analysis: The primer. Wiley. DOI: 10.1002/9780470725184
- Santesso, C. A. (2018). ParIDF: Python open source code developed to perform parametric simulations through EnergyPlus Building Energy Simulation (BES) software (Source code). Universidade de São Paulo.
https://www.iau.usp.br/laboratorios/lca/index.php/trabalhos-conforto/ - Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249–257. DOI: 10.1016/j.enbuild.2006.07.001
- Seo, S., & Hwang, Y. (2001). Estimation of CO2 emissions in life cycle of residential buildings. Journal of Construction Engineering and Management, 127(5), 414–418. DOI: 10.1061/(ASCE)0733-9364(2001)127:5(414)
- Sinduscon-MG. (2007). Custo unitário básico (CUB/m2): Principais aspectos. Sinduscon-MG.
http://www.cub.org.br/cartilha-cub-m2 - Sinha, R., Lennartsson, M., & Frostell, B. (2016). Environmental footprint assessment of building structures: A comparative study. Building and Environment, 104, 162–171. DOI: 10.1016/j.buildenv.2016.05.012
- Suzuki, M., & Oka, T. (1998). Estimation of life cycle energy consumption and CO2 emission of office buildings in Japan. Energy and Buildings, 28(1), 33–41. DOI: 10.1016/S0378-7788(98)00010-3
- Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835. DOI: 10.1016/j.rser.2008.09.033
- Taborianski, V. M., & Prado, R. T. A. (2012). Methodology of CO2 emission evaluation in the life cycle of office building façades. Environmental Impact Assessment Review, 33(1), 41–47. DOI: 10.1016/j.eiar.2011.10.004
- Tian, W., Heo, Y., de Wilde, P., Li, Z., Yan, D., Park, C. S., Feng, X., & Augenbroe, G. (2018). A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews, 93, 285–301. DOI: 10.1016/j.rser.2018.05.029
- UN. (2021). GVA by kind of economic activity. National accounts. UNData.
http://data.un.org/ - US Department of Energy. (2019). EnergyPlus version 9.2.0 documentation. Engineering reference. US Department of Energy.
https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/ - Versage, R., Borgstein, E., & Lamberts, R. (n.d.). Grau-horas de resfriamento GHR. Conselho Brasileiro de Construção Sustentável (CBCS).
http://cbcs2.hospedagemdesites.ws/_5dotSystem/userFiles/CTEnergia-benchmark/CBCS_GHRs_v1%20(1).pdf - Wallhagen, M., Glaumann, M., & Malmqvist, T. (2011). Basic building life cycle calculations to decrease contribution to climate change—Case study on an office building in Sweden. Building and Environment, 46(10), 1863–1871. DOI: 10.1016/j.buildenv.2011.02.003
- Wang, J., Yu, C., & Pan, W. (2018). Life cycle energy of high-rise office buildings in Hong Kong. Energy and Buildings, 167, 152–164. DOI: 10.1016/j.enbuild.2018.02.038
- Ward, J. K., Wall, J., & Perfumo, C. (2012). Environmentally active buildings: The controls challenge. Architectural Science Review, 55(1), 26–34. DOI: 10.1080/00038628.2011.641735
- Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C. O., & Wernet, G. (2013). Overview and methodology. Data quality guideline for the ecoinvent database version 3 (Ecoinvent Report No. 1 (v3)). The ecoinvent Centre.
https://lca-net.com/publications/show/overview-methodology-data-quality-guideline-ecoinvent-database-version-3/ - Wiik, M. K., Fufa, S. M., Kristjansdottir, T., & Andresen, I. (2018). Lessons learnt from embodied GHG emission calculations in zero emission buildings (ZEBs) from the Norwegian ZEB research centre. Energy and Buildings, 165, 25–34. DOI: 10.1016/j.enbuild.2018.01.025
- Williams, D., Elghali, L., Wheeler, R., & France, C. (2012). Climate change influence on building lifecycle greenhouse gas emissions: Case study of a UK mixed-use development. Energy and Buildings, 48, 112–126. DOI: 10.1016/j.enbuild.2012.01.016
- Wong, I. L., Krüger, E., Loper, A. C. M., & Mori, F. K. (2019). Classification and energy analysis of bank building stock: A case study in Curitiba, Brazil. Journal of Building Engineering, 23, 259–269. DOI: 10.1016/j.jobe.2019.02.003
- Yan, H., Shen, Q., Fan, L. C. H., Wang, Y., & Zhang, L. (2010). Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Building and Environment, 45(4), 949–955. DOI: 10.1016/j.buildenv.2009.09.014
- Ylmén, P., Peñaloza, D., & Mjörnell, K. (2019). Life cycle assessment of an office building based on site-specific data. Energies, 12(13), 2588. DOI: 10.3390/en12132588
- Yohanis, Y. G., & Norton, B. (2002). Life-cycle operational and embodied energy for a generic single-storey office building in the UK. Energy, 27(1), 77–92. DOI: 10.1016/S0360-5442(01)00061-5
- Zhang, X., Zheng, R., & Wang, F. (2019). Uncertainty in the life cycle assessment of building emissions: A comparative case study of stochastic approaches. Building and Environment, 147, 121–131. DOI: 10.1016/j.buildenv.2018.10.016
